【題目】已知某項工程由甲、乙兩隊合做12天可以完成,共需工程費用27720元.乙隊單獨完成這項工程所需時間是甲隊單獨完成這項工程所需時間的1.5倍,且甲隊每天的工程費用比乙隊多250元.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)若工程管理部門決定從這兩個隊中選一個隊單獨完成此項工程,從節(jié)約資金的角度考慮,應選擇哪個工程隊?請說明理由.
【答案】(1)甲單獨完成這項工程需要20天,乙單獨完成這項工程需要30天
(2)甲工程隊單獨完成較劃算,理由見解析.
【解析】
(1)設甲需要x天,則乙需要1.5x天,根據(jù)甲乙兩隊合作12天可以完成整個工作任務列出方程即可求解;(2)設甲每天的費用是y元, 每天的費用是(y-250)元,根據(jù)總工程費用列出方程即可求出y的值,再分別計算即可.
(1)設甲需要x天,則乙需要1.5x天,
根據(jù)題意得
解得x=20,
經(jīng)檢驗x=20是原方程的解,
1.5x=30天,
∴甲單獨完成這項工程需要20天,乙單獨完成這項工程需要30天.
(2)設甲每天的費用是y元, 每天的費用是(y-250)元,
依題意得12y+12(y-250)=27720
解得y=1280(元),
1280-250=1030(元)
甲單獨完成這項工程的費用:1280×20=25600元,
乙單獨完成這項工程的費用:1030×30=30900元,
故選甲工程隊單獨完成較劃算.
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了了解2013年初中畢業(yè)生畢業(yè)后的去向,對部分初三學生進行了抽樣調(diào)查,就初三學生的四種去向
A.讀普通高中; | B.讀職業(yè)高中 | C.直接進入社會就業(yè); | D.其它)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a)、(b).請問: |
(1)該縣共調(diào)查了 名初中畢業(yè)生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該縣2013年初三畢業(yè)生共有4500人,請估計該縣今年的初三畢業(yè)生中讀普通高中的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:
①∠ABN=60°;②AM=1;③QN= ;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是 .
其中正確結論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為創(chuàng)建“美麗鄉(xiāng)村”,某村計劃購買甲、乙兩種樹苗共400棵,對本村道路進行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.
若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?
若購買甲種樹苗的金額不少于購買乙種樹苗的金額,則至少應購買甲種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結論是( )
A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點G;作射線AG交CD于點H.則下列結論:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四邊形ABCH.
其中正確的有( )
A. ①②③ B. ①③④ C. ②④ D. ①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),、與之間的函數(shù)關系如圖所示.
(1)甲采摘園的門票是_____元,兩個采摘園優(yōu)惠前的草莓單價是每千克____元;
(2)當時,求與的函數(shù)表達式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com