【題目】在一個(gè)不透明的袋子中裝有 4 個(gè)紅球和 6 個(gè)黃球,這些球除顏色外都相同,將袋子中的球充 分搖勻后,隨機(jī)摸出一球.

1)分別求摸出紅球和摸出黃球的概率

2)為了使摸出兩種球的概率相同,再放進(jìn)去 8 個(gè)同樣的紅球或黃球,那么這 8 個(gè)球中紅球和 黃球的數(shù)量分別是多少?

【答案】1P(摸到紅球)=P(摸到黃球)=;25 個(gè), 3 個(gè).

【解析】1)直接利用概率公式計(jì)算即可求出摸出的球是紅球和黃球的概率;

(2)設(shè)放入紅球x個(gè),則黃球?yàn)椋?/span>8x)個(gè),由摸出兩種球的概率相同建立方程,解方程即可求出8個(gè)球中紅球和黃球的數(shù)量分別是多少.

(1)∵袋子中裝有4個(gè)紅球和6個(gè)黃球,

∴隨機(jī)摸出一球是紅球和黃球的概率分別是:

P(摸到紅球)=,P(摸到黃球)=

(2)設(shè)放入紅球x個(gè),則黃球?yàn)椋?/span>8x)個(gè),

由題意列方程得:

解得:x=5.

所以這8個(gè)球中紅球和黃球的數(shù)量分別應(yīng)是5個(gè)和3個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解分式方程:

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問(wèn)題

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出BC的坐標(biāo);

(3)計(jì)算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)邊長(zhǎng)為6的等邊三角形電子跳蚤游戲盤(pán).如果跳蚤開(kāi)始時(shí)在AB邊的P0處,且BP0=1,跳蚤第一步從P0跳到BC邊的P1(第1次落點(diǎn))處,且BP1=BP0;第二步從P1跳到AC邊的P2(第2次落點(diǎn))處,且CP2=CP1;第三步從P2 跳到AB邊的P3(第3次落點(diǎn))處,且AP3=AP2;…;跳蚤按上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2017P2018之間的距離為(  )

A. 1 B. 2 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)EAD.

(1)求證:BE=CE.

(2)如圖,BE的延長(zhǎng)線交AC于點(diǎn)F,BFAC,垂足為F,BAC=45,原題設(shè)其它條件不變,求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰RtABC中,∠BAC=90°.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為腰作等腰RtADE,DAE=90°.連接CE.

(1)如圖,求證:△ACE≌△ABD;

(2)點(diǎn)D運(yùn)動(dòng)時(shí),∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說(shuō)明理由;

3)若AC=,當(dāng)CD=1時(shí),請(qǐng)求出DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CFAE于點(diǎn)F,BDAE于點(diǎn)D.求證:ABD≌△CAF;

2)如圖2,點(diǎn)B、C分別在∠MAN的邊AMAN上,點(diǎn)EF都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF;

3)如圖3,在ABC中,AB=AC,ABBC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖一次函數(shù)y= x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y= x2+bx+c的圖象與一次函數(shù)y= x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0).

(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案