【題目】如圖,已知直線直線,,觀察圖中的作圖痕跡完成下列各題.
(1)求的度數(shù);
(2)求圖中與全等三角形(除以外)的個數(shù).
【答案】(1)30°(2)3個
【解析】
(1)先根據(jù)MN∥PQ,得到=60°,根據(jù)尺規(guī)作圖的方法可知BD平分,AC平分,可得,再根據(jù)平行線的性質(zhì)即可得到的度數(shù);
(2)根據(jù)題意證明四邊形ABCD是菱形,即可得到全等三角形的個數(shù).
(1)∵M(jìn)N∥PQ,
∴=
根據(jù)尺規(guī)作圖的方法可知BD平分,AC平分,
∴
則=
(2)∵
∴
∵AC平分
∴
∵M(jìn)N∥PQ
∴
則
∴AB=BC
同理可得AB=AD
∴AD=BC
又AD∥BC
∴四邊形ABCD是平行四邊形,
又AB=AD
∴平行四邊形ABCD是菱形
∴AC⊥BD
故△AOB≌△COD≌△ADO≌CBO
故圖中與全等三角形(除以外)的個數(shù)為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點Q與點B在AC的同側(cè),且AQ⊥AC.
(1)如圖1,點Q不與點A重合,連結(jié)CQ交AB于點P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)是否存在點Q,使△PAQ與△ABC相似,若存在,求AQ的長;若不存在,請說明理由;
(3)如圖2,過點B作BD⊥AQ,垂足為D.將以點Q為圓心,QD為半徑的圓記為⊙Q.若點C到⊙Q上點的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)圖象的頂點坐標(biāo)是(3,5),且拋物線經(jīng)過點A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應(yīng)市場變化調(diào)整第一個月的銷售價,預(yù)計銷售定價每增加1元,銷售量將減少10套。
(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表。
時間 | 第一個月 | 第二個月 |
每套銷售定價(元) | ||
銷售量(套) |
(2)若商店預(yù)計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知是的外角的平分線,且交的延長線于點.
(1)若恰好垂直平分,求的度數(shù);
(2)王涵探究后提出等式:,請通過證明判斷“王涵發(fā)現(xiàn)”是否正確;
(3)如圖②,過點作,垂足為,若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發(fā)前,汽車油箱內(nèi)儲油45升;當(dāng)行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30升.
(1)已知油箱內(nèi)余油量y(升)是行駛路程x(千米)的一次函數(shù),求y與x的函數(shù)關(guān)系式;
(2)當(dāng)油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(13分)如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點,MP⊥AB交邊CD于點P,連接NM,NP.
(1)若∠B=60°,這時點P與點C重合,則∠NMP= 度;
(2)求證:NM=NP;
(3)當(dāng)△NPC為等腰三角形時,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com