【題目】若順次連接四邊形ABCD四邊中點形成的四邊形為矩形,則四邊形ABCD滿足的條件為.___________
【答案】AC⊥BD
【解析】
如圖所示,由四邊形EFGH為矩形,根據(jù)矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據(jù)中位線定理得到EF與DB平行,根據(jù)兩直線平行,同旁內(nèi)角互補得到∠EMO=90°,同理根據(jù)三角形中位線定理得到EH與AC平行,再根據(jù)兩直線平行,同旁內(nèi)角互補得到∠AOD=90°,根據(jù)垂直定義得到AC與BD垂直.
順次連接四邊形ABCD四邊中點形成的四邊形為矩形,則四邊形ABCD滿足的條件為對角線垂直,理由:
∵四邊形EFGH是矩形,
∴∠FEH=90°,
又∵點E、F、分別是AD、AB、各邊的中點,
∴EF是三角形ABD的中位線,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵點E、H分別是AD、CD各邊的中點,
∴EH是三角形ACD的中位線,
∴EH∥AC,
∴∠OMH=∠COB=90°,
則AC⊥BD,故四邊形ABCD滿足的條件為對角線垂直.
故答案為:AC⊥BD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,AB=AC,D、E分別在邊AB、AC上,且滿足AD=AE.下列結論中:①;②AO平分∠BAC;③OB=OC;④AO⊥BC;⑤若,則;其中正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學騎自行車去郊外春游,騎行1小時后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時間x(時)之間關系的圖象.
(1)根據(jù)圖象回答:小明到達離家最遠的地方用了多長時間?此時離家多遠?
(2)求小明出發(fā)2.5小時后離家多遠;
(3)求小明出發(fā)多長時間離家12千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在中,于,平分,,,求和的度數(shù).對于上述問題,在以下解答過程的空白處填上適當?shù)膬?nèi)容(理由或數(shù)學式).
解:∵,平分(______)
∴__________________.(角平分線的定義)
∵(已知)
∴__________________.(______)
∵(______)
∴(等式的性質(zhì))
______(等量代換)
______.
∵于(已知)
∴(______)
在直角三角形中,
∵(______)
∴(等式的性質(zhì))
______(等量代換)
______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點A在直線y=x上,其中A點的橫坐標為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線(k≠0)與有交點,則k的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD的各頂點坐標分別為A(1,0),B(2,0),C(2,2),D(0,1),四邊形BFGH的各頂點坐標分別為F(4,0),G(4,4),H(0,2),則下列說法正確的是( )
A. 四邊形ABCD與四邊形BFGH相似但不位似
B. 四邊形ABCD與四邊形BFGH位似但不相似
C. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶
D. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊木板如圖所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面積為( 。
A. 60 B. 30 C. 24 D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC上的一點,連接AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.
求證:(1)CG=BH;
(2)FC2=BF·GF;
(3).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com