【題目】如圖,在⊙O中,點(diǎn)C為 的中點(diǎn),∠ACB=120°,OC的延長線與AD交于點(diǎn)D,且∠D=∠B.
(1)求證:AD與⊙O相切;
(2)若CE=4,求弦AB的長.
【答案】(1)見解析;(2)8
【解析】
(1)連接OA,由,得CA=CB,根據(jù)題意可得出∠O=60°,從而得出∠OAD=90°,則AD與⊙O相切;
(2)由題意得OC⊥AB,Rt△BCE中,由三角函數(shù)得BE=4,即可得出AB的長.
(1)證明:如圖,連接OA,
∵,
∴CA=CB,
又∵∠ACB=120°,
∴∠B=30°,
∴∠O=2∠B=60°,
∵∠D=∠B=30°,
∴∠OAD=180°﹣(∠O+∠D)=90°,
∴AD與⊙O相切;
(2)∵∠O=60°,OA=OC,
∴△OAC是等邊三角形,
∴∠ACO=60°,
∵∠ACB=120°,
∴∠ACB=2∠ACO,AC=BC,
∴OC⊥AB,AB=2BE,
∵CE=4,∠B=30°,
∴BC=2CE=8,
∴BE===4,
∴AB=2BE=8,
∴弦AB的長為8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn),兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),點(diǎn)是拋物線上的一個動點(diǎn),過作軸,垂足為,交直線于點(diǎn).
(1)直接寫出,,三點(diǎn)的坐標(biāo);
(2)若以,,,為頂點(diǎn)的四邊形是平行四邊形,求此時點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)位于直線下方的拋物線上時,過點(diǎn)作于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與的函數(shù)關(guān)系式,并求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),連接AC并延長至點(diǎn)D,使CD=AC,點(diǎn)E是OB上一點(diǎn),且,CE的延長線交DB的延長線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△EFG是兩塊完全重合的等邊三角形紙片,(如圖①所示)O是AB(或EF)的中點(diǎn),△ABC不動,將△EFG繞O點(diǎn)順時針轉(zhuǎn)α﹝0°<α<120°﹞角.
(1)試分別說明α為多少度時,點(diǎn)F在△ABC外部、BC上、內(nèi)部(不證明)?
(2)當(dāng)點(diǎn)F不在BC上時,在圖②、圖③兩種情況下(設(shè)EF或延長線與BC交于P,EG與CA或延長線交于Q),分別寫出OP與OQ的數(shù)量關(guān)系,并將圖③情況給予說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學(xué)生共有_____人,其中選擇類的人數(shù)有_____人;
(2)在扇形統(tǒng)計(jì)圖中,求類對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若將這四類上學(xué)方式視為“綠色出行”,請估計(jì)該校選擇“綠色出行”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某縣政府部門決定,招標(biāo)一工程隊(duì)負(fù)責(zé)完成一座水庫的土方施工任務(wù).該工程隊(duì)有A,B兩種型號的挖掘機(jī),已知1臺A型和2臺B型挖掘機(jī)同時施工1小時共挖土80立方米,2臺A型和3臺B型挖掘機(jī)同時施工1小時共挖土140立方米.每臺A型挖掘機(jī)一個小時的施工費(fèi)用是350元,每臺B型挖掘機(jī)一個小時的施工費(fèi)用是200元.
(1)分別求每臺A型,B型挖掘機(jī)一小時各挖土多少立方米?
(2)若A型和B型挖掘機(jī)共10臺同時施工4小時,至少完成1360立方米的挖土量,且總費(fèi)用不超過14000元.問施工時有哪幾種調(diào)配方案?且指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=9,BC=12.點(diǎn)Q是線段AC上的一個動點(diǎn),過點(diǎn)Q作AC的垂線交射線AB于點(diǎn)P.當(dāng)△PQB為等腰三角形時,則AP的長為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com