【題目】在平面直角坐標系中,點坐標是.當把坐標系繞點順時針選擇30°時,點在旋轉(zhuǎn)后的坐標系中的坐標是____;當把坐標系繞點逆時針選擇30°時,點在旋轉(zhuǎn)后的坐標系中的坐標是____

【答案】

【解析】

根據(jù)題意,畫出圖形,連接AO,過點AABx軸于點B,得AO=2,∠AOB=30°,當把坐標系繞點順時針旋轉(zhuǎn)30°時,相當于把OA繞點O逆時針旋轉(zhuǎn)30°,當把坐標系繞點逆時針旋轉(zhuǎn)30°時,相當于把OA繞點O順時針旋轉(zhuǎn)30°,分別進行求解,即可.

連接AO,過點AABx軸于點B,

∵點坐標是

AB=1,BO=,

AO==2,∠AOB=30°.

∵當把坐標系繞點順時針旋轉(zhuǎn)30°時,相當于把OA繞點O逆時針旋轉(zhuǎn)30°,

∴點在旋轉(zhuǎn)后的坐標系中x軸的負半軸上,即:A(-20)

∵當把坐標系繞點逆時針旋轉(zhuǎn)30°時,相當于把OA繞點O順時針旋轉(zhuǎn)30°,

∴∠BOA=60°,OA=OA=2,

AB= OA×sin60°=2×=,OB= OA×cos60°=2×=1,

故答案是:;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點從點出發(fā),沿著矩形的邊順時針方向運動一周回到點,則點圍成的圖形面積與點運動路程之間形成的函數(shù)關(guān)系式的大致圖象是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某數(shù)學小組在學完《直角三角形的邊角關(guān)系》這章后,決定用所學的知識設(shè)計遮陽篷(要求:遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)).他們制定了設(shè)計方案,并利用課余時間完成了調(diào)查和實地測量.調(diào)查和測量項目及結(jié)果如下表:

項目

內(nèi)容

課題

設(shè)計遮陽篷

測量示意圖

如圖,設(shè)計了垂直于墻面AC的遮陽篷CD,AB表示窗戶的高度.榆次區(qū)一年中,夏至這一天的正午時刻,太陽光線DA與遮陽篷CD的夾角∠ADC最大;冬至這一天的正午時刻,太陽光線DB與遮陽篷CD的夾角∠CDB最。

調(diào)查數(shù)據(jù)

測量數(shù)據(jù)

根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.

(結(jié)果精確到,參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,BC,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:

1)求參加比賽的學生共有多少名?并補全圖1的條形統(tǒng)計圖.

2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,以點為圓心,以為半徑作優(yōu)弧,交于點,交于點.在優(yōu)弧上從點開始移動,到達點時停止,連接.

1)當時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;

2)當時,求點在優(yōu)弧上移動的路線長及線段的長.

3)連接,設(shè)的面積為,直接寫出的取值范圍.

備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD的頂點B,Cx軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點A(mm+3)和CD上的點E,且OB-CE=1。直線lO、E兩點,則tanEOC的值為( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=-1,且拋物線經(jīng)過A1,0),C0,3)兩點,與x軸交于點B

1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

3)設(shè)點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】漢江是長江最長的支流,在歷史上占居重要地位,陜西省境內(nèi)的漢江為漢江上游段.李琳利用熱氣球探測器測量漢江某段河寬,如圖,探測器在A處觀測到正前方漢江兩岸岸邊的B、C兩點,并測得BC兩點的俯角分別為45°,30°已知A處離地面的高度為80m,河平面BC與地面在同一水平面上,請你求出漢江該段河寬BC(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案