【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

【答案】(1)證明見解析;(2)

【解析】(1)根據(jù)對(duì)角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;

(2)設(shè)CD=x,連接BD.利用勾股定理構(gòu)建方程即可解決問題.

(1)證明:∵AB是直徑,

∴∠AEB=90°,

AEBC,

AB=AC,

BE=CE,

AE=EF,

∴四邊形ABFC是平行四邊形,

AC=AB,

∴四邊形ABFC是菱形.

(2)設(shè)CD=x.連接BD.

AB是直徑,

∴∠ADB=BDC=90°,

AB2﹣AD2=CB2﹣CD2,

(7+x)2﹣72=42﹣x2,

解得x=1或﹣8(舍棄)

AC=8,BD==,

S菱形ABFC=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,平分,,那么的長是 ____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O 的內(nèi)接四邊形 ABCD 兩組對(duì)邊延長線分別交于點(diǎn) E、F

(1)若E=∠F,求證:ADC=∠ABC;

(2)若E=∠F=40°,求A 的度數(shù);

(3)若E=30°,∠F=40°,求A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).

(1)若m=6,求當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的t的值.

(2)已知m滿足:在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,求所有這樣的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BABC,D在邊CB上,且DBDAAC

1)填空:如圖1,∠B   °,∠C   °;

2)如圖2,若M為線段BC上的點(diǎn),過MMHAD,交AD的延長線于點(diǎn)H,分別交直線ABAC與點(diǎn)N、E

①求證:ANE是等腰三角形;

②線段BN、CE、CD之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B.

(1)求拋物線的解析式; (2)畫出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度得到△DEC,點(diǎn)D恰好落在AB邊上,連接AE. 求:

(1)旋轉(zhuǎn)角的度數(shù);

(2)AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,C,D,ERt△MON的邊上,∠MON=90°,AE⊥ABAE=AB,BC⊥CD,BH⊥ON于點(diǎn)H,DF⊥ON于點(diǎn)F,OM=12,OE=6,BH=3,DF=4,F(xiàn)N=8,圖中陰影部分的面積為( 。

A. 30 B. 50 C. 66 D. 80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測量∠A90°,AB3m,BC12m,CD13mDA4m,若每平方米草皮需要200元,則要投入_____元.

查看答案和解析>>

同步練習(xí)冊(cè)答案