【題目】已知:如圖12①、②、③,在矩形ABCD中,AB4,BC8,P是邊BC上的一個(gè)動(dòng)點(diǎn).

1)如圖①,若DEAP,垂足為E,求證:AED∽△PBA

2)如圖②,在(1)的條件下,將DE沿AP方向平移,使PE兩點(diǎn)重合,且與邊CD的交點(diǎn)為M,若MC3,求BP的長(zhǎng).

3)如圖③,Q是邊CD上的一個(gè)動(dòng)點(diǎn),若2,且H,NG分別為AP,PQ,PC的中點(diǎn),請(qǐng)問(wèn):在PQ兩點(diǎn)分別在BC、CD上運(yùn)動(dòng)的過(guò)程中,四邊形HPGN的面積是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由,若不變化,請(qǐng)求出它的面積.

【答案】1)見(jiàn)解析;(2BP的長(zhǎng)為26;(3)四邊形HPGN的面積不會(huì)發(fā)生變化,它的面積是4

【解析】

(1)根據(jù)題意知∠DAE=APB,利用DEAP,∠B=90°,即可得到△AED∽△PBA;

(2)根據(jù)題意可以證得APB∽△PMC,設(shè)BP=x,則PC=8-x,利用相似的性質(zhì)=,將對(duì)應(yīng)的線(xiàn)段值代入進(jìn)去,列出方程即可求解;

(3)根據(jù)題意設(shè)設(shè)CQ=k,則BP=2k,過(guò)點(diǎn)HHFBCF,可證得△PHF∽△PAB,得出HF=AB=2,PF=PB=k,利用三角形中位線(xiàn)性質(zhì)可得△PNG∽△PQC,得出PG=4-k,NG=4,從而表示出四邊形HPGN的面積即可.

證明:(1)∵四邊形ABCD是矩形,

ADBC,∠B=90°,

∴∠DAE=APB

又∵DEAP,

∴∠DEA=90°,

∴∠DEA=B,

∴△AED∽△PBA

(2)由題意知MPAP,

∴∠APM=90°,

∴∠APB+MPC=90°

又∵∠APB+PAB=90°,

∴∠APB=PMC

∵∠B=C=90°,

APB∽△PMC,

=

設(shè)BP=x,則PC=8-x,

=,

解得x=26,

BP的長(zhǎng)為26

3)因?yàn)?/span>=2,設(shè)CQ=k,則BP=2k

如圖,過(guò)點(diǎn)HHFBCF,

又∵ABBC

HFAB,

∴△PHF∽△PAB,

===,

HF=AB=2,PF=PB=k

N、G分別是PQPC的中點(diǎn),

NGQC,

∴△PNG∽△PQC,

===,

PG=PC=( BC-BP)=4-kNG=CQ=k

S四邊形HPGN=S梯形HFGN-SHFP=(k+2)(4-k+k)-×2k=k+4-k=4

所以,四邊形HPGN的面積不會(huì)發(fā)生變化,它的面積是4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,且AD//BC,BD的垂直平分線(xiàn)經(jīng)過(guò)點(diǎn)O,分別與AD、BC交于點(diǎn)E、F

1)求證:四邊形ABCD為平行四邊形;

2)求證:四邊形BFDE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,半徑,上一動(dòng)點(diǎn)(不包括兩點(diǎn)),,垂足分別為

1)求的長(zhǎng)

2)若點(diǎn)的中點(diǎn),

①求劣弧的長(zhǎng)度,

②者點(diǎn)為直徑上一動(dòng)點(diǎn),直接寫(xiě)出的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:

1本次調(diào)查學(xué)生共 人, = ,并將條形圖補(bǔ)充完整;

2如果該校有學(xué)生2000人,請(qǐng)你估計(jì)該校選擇跑步這種活動(dòng)的學(xué)生約有多少人?

3學(xué)校讓每班在A、B、CD四鐘活動(dòng)形式中,隨機(jī)抽取兩種開(kāi)展活動(dòng),請(qǐng)用樹(shù)狀圖或列表的方法,求每班抽取的兩種形式恰好是跑步跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,ABDC,P為梯形ABCD外一點(diǎn),PA、PD分別交線(xiàn)段BC于點(diǎn)E、F,且PAPD

1)寫(xiě)出三對(duì)你認(rèn)為全等的三角形(不再添加輔助線(xiàn));

2)選擇你在(1)中寫(xiě)出的全等三角形中的任意一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線(xiàn)桿,某人在河岸MN上的A處測(cè)得∠DAB30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF70°,求河流的寬度(結(jié)果精確到個(gè)位,1.73,sin70°0.94,cos70°0.34,tan70°2.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)綠水青山就是金山銀山的號(hào)召,建設(shè)生態(tài)文明,某工廠自20191月開(kāi)始限產(chǎn)并進(jìn)行治污改造,其月利潤(rùn)(萬(wàn)元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項(xiàng)錯(cuò)誤的是(

A.4月份的利潤(rùn)為萬(wàn)元

B.污改造完成后每月利潤(rùn)比前一個(gè)月增加萬(wàn)元

C.治污改造完成前后共有個(gè)月的利潤(rùn)低于萬(wàn)元

D.9月份該廠利潤(rùn)達(dá)到萬(wàn)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),.點(diǎn)在函數(shù)圖像上,軸,且,直線(xiàn)是拋物線(xiàn)的對(duì)稱(chēng)軸,是拋物線(xiàn)的頂點(diǎn).

(1)求、的值;

(2)如圖,連接,線(xiàn)段上的點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)恰好在線(xiàn)段上,求點(diǎn)的坐標(biāo);

(3)如圖,動(dòng)點(diǎn)在線(xiàn)段上,過(guò)點(diǎn)軸的垂線(xiàn)分別與交于點(diǎn),與拋物線(xiàn)交于點(diǎn).試問(wèn):拋物線(xiàn)上是否存在點(diǎn),使得的面積相等,且線(xiàn)段的長(zhǎng)度最?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

(3)當(dāng)ADE是等腰三角形時(shí),求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案