【題目】如圖,在⊙O的內(nèi)接三角形ABC中,,,過C作AB的垂線l交⊙O于另一點(diǎn)D,垂足為E.設(shè)P是上異于A,C的一個(gè)動(dòng)點(diǎn),射線AP交l于點(diǎn)F,連接PC與PD,PD交AB于點(diǎn)G.
(1)求證:;
(2)若, ,求PD的長.
【答案】(1)證明見解析;(2).
【解析】
(1)證明相似,思路很常規(guī),就是兩個(gè)角相等或邊長成比例.因?yàn)轭}中由圓周角易知一對相等的角,那么另一對角相等就是我們需要努力的方向,因?yàn)樯婕皥A,傾向于找接近圓的角∠DPF,利用補(bǔ)角在圓內(nèi)作等量代換,等弧對等角等知識(shí)易得∠DPF=∠APC,則結(jié)論易證.
(2)求PD的長,且此線段在上問已證相似的△PDF中,很明顯用相似得成比例,再將其他邊代入是應(yīng)有的思路.利用已知條件易得其他邊長,則PD可求.
解:(1)∵四邊形APCB內(nèi)接于圓O,
∴∠FPC=∠B.
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,
∴∠APD=∠FPC,∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD,
又∵∠PAC=∠PDC,
∴△PAC∽△PDF;
(2)如圖1,連接PO,
則由 ,,有PO⊥AB,且∠PAB=45°,△APO、△AEF都為等腰直角三角形.在Rt△ABC中,
∵AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC= ,
∴AC=2,
∴CE=ACsin∠BAC=AC=2=2,
AE=ACcos∠BAC=AC=2=4,
∵△AEF為等腰直角三角形,
∴EF=AE=4,
∴FD=FC+CD=(EF-CE)+2CE=EF+CE=4+2=6.
∵△APO為等腰直角三角形,AO=AB=,
∴AP=.
∵△PDF∽△PAC,
∴=,
∴=,
∴PD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)C在x軸上,為BC的中點(diǎn),則PM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長交DC的延長線于點(diǎn)E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC與∠CBE的平分線相交于點(diǎn)P,BE=BC,PB與CE交于點(diǎn)H,PG∥AD交BC于F,交AB于G,下列結(jié)論:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正確的判斷有( 。
A. 只有①②B. 只有③④C. 只有①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx﹣1交y軸于點(diǎn)B,交x軸于點(diǎn)C,以BC為邊的正方形ABCD的頂點(diǎn)A(﹣1,a)在雙曲線y=﹣(x<0)上,D點(diǎn)在雙曲線y=(x>0)上,則k的值為( 。
A. 6 B. 5 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉動(dòng)弓弦的過程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長.如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時(shí),有AD1=30cm,∠B1D1C1=120°.
(1)圖2中,弓臂兩端B1,C1的距離為______cm.
(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長為____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝“五四”青年節(jié),我市某中學(xué)舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)成績(滿分為100分),并制作成圖表如下
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次隨機(jī)抽查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是 ;
(4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績不低于80分的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com