【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)y= 的圖象的一個交點是(2,3).
(1)求出這兩個函數(shù)的表達式;
(2)作出兩個函數(shù)的草圖,利用你所作的圖形,猜想并驗證這兩個函數(shù)圖象的另一個交點的坐標;
(3)直接寫出使反比例函數(shù)值大于正比例函數(shù)值的x的取值范圍.
【答案】
(1)解:由正比例函數(shù)y=k1x的圖象與反比例函數(shù)y= 的圖象的一個交點是(2,3),得
3=2k1,3= .
解得k1= ,k2=6.
正比例函數(shù)y= x;反比例函數(shù)y=
(2)解:畫出函數(shù)的圖象如圖:
兩個函數(shù)圖象的一個交點的坐標(2,3),猜想另一個交點的坐標(﹣2,﹣3),
把(﹣2,﹣3)代入y= 成立
(3)解:由圖象可知:比例函數(shù)值大于正比例函數(shù)值的x的取值范圍是x<﹣2或0<x<2
【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)函數(shù)解析式確定出圖象所經(jīng)過的點的坐標,再畫出圖象即可.(3)根據(jù)圖象和交點坐標即可求得.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知點M(0,2),直線y= x+4與兩坐標軸分別交于A,B兩點,P、Q分別是線段OA,AB上的動點,則PQ+MP的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的方程x2﹣(2m﹣1)x+m2﹣1=0的兩實數(shù)根為x1 , x2 , 且x12+x22=3,則m= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將形狀、大小完全相同的“”和線段按照一定規(guī)律擺成下列圖形.第1幅圖形中“”的個數(shù)為,第2幅圖形中“”的個數(shù)為,第3幅圖形中“”的個數(shù)為,……,以此類推,解決以下問題:
(1)直接寫出 , (用含n的代數(shù)式表示);
(2)猜想是否存在某幅圖中“”的個數(shù)為2018,若存在,直接寫出n的值;若不存在,則直接寫出2018至少再加上多少后所得的數(shù)正好是某幅圖中黑點的個數(shù),并直接寫出此時n的值;
(3)求出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB表示路燈,當身高為1.6米的小名站在離路燈1.6的D處時,他測得自己在路燈下的影長DE與身高CD相等,當小明繼續(xù)沿直線BD往前走到E點時,畫出此時小明的影子,并計算此時小明的影長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,,,求證:DF∥AC.
證明:∵ (已知),∠1=∠3,∠2=∠4( ),
∴∠3=∠4(等量代換).
∴____________________( ).
∴∠C=∠ABD( ).
∵∠C=∠D( ),
∴∠D=__________( ).
∴AC∥DF( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點在BC上,且四邊形AEFD是平行四邊形.
(1)AD與BC有何等量關(guān)系?請說明理由;
(2)當AB=DC時,求證:四邊形AEFD是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖中的虛線網(wǎng)格是等邊三角形網(wǎng)格,它的每一個小三角形都是邊長為1的等邊三角形.
(1)邊長為1的等邊三角形的高=____;
(2)圖①中的ABCD的對角線AC的長=____;
(3)圖②中的四邊形EFGH的面積=____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,B在x軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)(k>0)在第一象限內(nèi)過點A,且與BC交于點F.(1)若OA=10,求反比例函數(shù)的解析式;
(2)若F為BC的中點,且S△AOF=24,求OA長及點C坐標;
(3)在(2)的條件下,過點F作EF∥OB交OA于點E(如圖2),若點P是直線EF上一個動點,連結(jié),PA,PO,問是否存在點P,使得以P,A,O三點構(gòu)成的三角形是直角三角形?若存在,請指出這樣的P點有幾個,并直接寫出其中二個P點坐標;若不存在,請說明了理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com