【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,且AD=AC,過點B作BE⊥CD,交直線CD于點E.
(1)求∠BCD的度數;
(2)作AF⊥CD于點F,求證:△AFD≌△CEB;
(3)請直接寫出CD與BE的數量關系(不需要證明).
【答案】(1) ∠BCD==22.5°;(2)見解析 (3) CD=2BE.
【解析】
(1)根據等腰直角三角形的性質得到∠CAB=∠CBA=45°,根據等腰三角形的性質計算即可;(2)根據全等三角形的判定證明△AFD≌△CEB即可.(3)根據全等三角形的性質證明即可.
解:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=∠CBA=45°.
∵AD=AC,
∴∠ACD=∠ADC= =67.5°.
∴∠BCD=90°-67.5°=22.5°.
(2)證明:∵AD=AC,AF⊥CD,
∴CF=FD=CD,∠FAD=∠CAB=22.5°.
又∵AC=CB,∴AD=CB,
在△AFD和△CEB中,
∴△AFD≌△CEB(AAS).
(3)∵△AFD≌△CEB,
∴BE=DF,
又∵AD=AC,且AF⊥CD
∴CD=2DF,
∴CD=2BE.
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC邊上的高AG平分∠BAC.
(1)如圖1,求證:AB=AC.
(2)如圖2,點D、E在△ABC的邊BC上,AD=AE,BC=10cm,DE=6cm,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.
(1)求證:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當經過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿△ABC的三邊運動,求經過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點,并與過A點的直線y=﹣x﹣1交于點C.
(1)求拋物線解析式及對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使四邊形ACPO的周長最小?若存在,求出點P的坐標,若不存在,請說明理由;
(3)點M為y軸右側拋物線上一點,過點M作直線AC的垂線,垂足為N.問:是否存在這樣的點N,使以點M、N、C為頂點的三角形與△AOC相似,若存在,求出點N的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點D、E分別在邊CB、BA的延長線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展應用:如圖④,在等腰三角形中,AB=AC,點O是AB邊的垂直平分線與AC的交點,點D、E分別在OB、BA的延長線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(實驗操作)如圖①,在中,,現(xiàn)將邊沿的平分線翻折,點落在邊的點處;再將線段沿翻折到線段,連接.
(探究發(fā)現(xiàn))若點,,三點共線,則的大小是______,的大小是________,此時三條線段,,之間的數量關系是________.
(應用拓展)如圖②,將圖①中滿足(實驗操作)與(探究發(fā)現(xiàn))的的邊延長至,使得,連接,直接寫出的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com