【題目】如圖,在ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

【答案】(1)證明見解析; (2)菱形的面積為8

【解析】試題分析:(1從所給的條件可知,DE是△ABC中位線所以DEBC2DE=BC,所以BCEF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE所以是菱形;

2BCF120°,所以∠EBC60°,所以菱形的邊長也為4求出菱形的高面積就可求.

試題解析:(1)證明D、E分別是AB、AC的中點,DEBC2DE=BC.又∵BE=2DE,EF=BE,EF=BCEFBC,∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形

2)解∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為2,∴菱形的面積為4×2=8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DCB中,A=D=90°,AC=BD,AC與BD相交于點O.

(1)求證:ABO≌△DCO;

(2)OBC是何種三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用火柴棒按以下方式搭小魚,是課本上多次出現(xiàn)的數(shù)學(xué)活動.

(1)搭4條小魚需要火柴棒_________根;

(2)搭n條小魚需要火柴棒_____________根;

(3)若搭n朵某種小花需要火柴棒(3n+44)根,現(xiàn)有一堆火柴棒,可以全部用上搭出m條小魚,也可以全部用上搭出m朵小花,求m的值及這堆火柴棒的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展學(xué)生安全知識競賽.現(xiàn)抽取部分學(xué)生的競賽成績(滿分為100分,得分均為整數(shù))進行統(tǒng)計,繪制了圖中兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息,回答下列問題:

(1)a=  ,n=  ;

(2)補全頻數(shù)分布直方圖;

(3)該校共有2000名學(xué)生.若成績在80分以上的為優(yōu)秀,請你估計該校成績優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖像和一次函數(shù)y2=ax+b的圖像交于A(3,4)、B(—6,n)。

(1)求兩個函數(shù)的解析式;

(2)觀察圖像,寫出當x為何值時y1>y2?

(3)C、D分別是反比例函數(shù)第一、三象限的兩個分支上的點,且以A、B、C、D為頂點的四邊形是平行四邊形請直接寫出C、D兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、C分別在x軸、y軸的正半軸上移動,過點O、A、C作矩形OABC,OA=a,OC=b,移在動過程中,雙曲線y= (x>0)的圖象始終經(jīng)過BC的中點E,交AB于點D.

(1)證明:點DAB的中點;

(2) 連結(jié)OEAOE= α.

①當α=45°時,求 a、b之間的數(shù)量關(guān)系;

②當α=30°,k= 時,將四邊形OABE沿OE翻折,得四邊形OMNE,記雙曲線與四邊

OMNE除點E外的另一個交點為F,求直線DF的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)過多邊形的一個頂點的所有對角線的條數(shù)與這些對角線分多邊形所得的三角形個數(shù)的和為,求這個多邊形的邊數(shù);

(2)過多邊形的一個頂點的所有對角線條數(shù)與這些對角線分多邊形所得的三角形個數(shù)的和可能為嗎?若能,請求出這個多邊形的邊數(shù);若不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店以每箱60元新進一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),將稱重記錄如下:

規(guī)格

﹣0.2

﹣0.1

0

0.1

0.2

0.5

筐數(shù)

5

8

2

6

8

1

(1)求30箱蘋果的總重量

(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元

查看答案和解析>>

同步練習冊答案