【題目】如圖,在RtABC中,∠C90°,ACBC,點(diǎn)OAB上,經(jīng)過(guò)點(diǎn)AOBC相切于點(diǎn)D,交AB于點(diǎn)E,若CD,則圖中陰影部分面積為( 。

A.4B.2C.2πD.1

【答案】B

【解析】

連接ODOHACH,如圖,根據(jù)切線的性質(zhì)得到ODBC,則四邊形ODCH為矩形,所以OHCD,則OAOH2,接著計(jì)算出∠BOD45°,BDOD2,然后利用扇形的面積公式,利用圖中陰影部分面積=SOBDS扇形DOE進(jìn)行計(jì)算.

解:連接OD,過(guò)OOHACH,如圖,

∵∠C90°,ACBC,

∴∠B=∠CAB45°,

OBC相切于點(diǎn)D,

ODBC

∴四邊形ODCH為矩形,

OHCD,

RtOAH中,∠OAH45°,

OAOH2,

RtOBD中,∵∠B45°,

∴∠BOD45°,BDOD2

∴圖中陰影部分面積=SOBDS扇形DOE

=0.5×2×2

2π

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開(kāi)學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué),某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測(cè)試成績(jī),按由高到低分為A,B,CD四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

(1)該校共抽查了   名同學(xué)的數(shù)學(xué)測(cè)試成績(jī),扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a   ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀(測(cè)試成績(jī)B級(jí)以上為優(yōu)秀,含B級(jí))約有   名;

(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線頂點(diǎn)A的坐標(biāo)為(1,4),拋物線與x軸相交于BC兩點(diǎn),與y軸交于點(diǎn)E0,3).

1)求拋物線的表達(dá)式;

2)已知點(diǎn)F0,-3),在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得EP+FP最小,如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…Any軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3四邊形An1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An1BnAn=60°,菱形A2019B2020A2020C2020的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并解決相應(yīng)問(wèn)題:

小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)ya1x2+b1x+c1a10,a1b1、c1是常數(shù))與ya2x2+b2x+c2a20a2、b2、c2是常數(shù))滿足a1+a20b1b2,c1+c20,則這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求函數(shù)y2x23x+1的旋轉(zhuǎn)函數(shù),小明是這樣思考的,由函數(shù)y2x23x+1可知,a12,b1=﹣3,c11,根據(jù)a1+a20,b1b2c1+c20,求出a2,b2,c2就能確定這個(gè)函數(shù)的旋轉(zhuǎn)函數(shù).

請(qǐng)思考小明的方法解決下面問(wèn)題:

1)寫(xiě)出函數(shù)yx24x+3的旋轉(zhuǎn)函數(shù).

2)若函數(shù)y5x2+m1x+ny=﹣5x2nx3互為旋轉(zhuǎn)函數(shù),求(m+n2020的值.

3)已知函數(shù)y2x1)(x+3)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1C1,試求證:經(jīng)過(guò)點(diǎn)A1、B1、C1的二次函數(shù)與y2x1)(x+3)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,,把EAD沿AE折疊,使點(diǎn)D恰好落在AB邊上的處,再將繞點(diǎn)E順時(shí)針旋轉(zhuǎn),得到,使得恰好經(jīng)過(guò)的中點(diǎn)FAB于點(diǎn)G,連接有如下結(jié)論:①的長(zhǎng)度是;②弧的長(zhǎng)度是;③;④.上述結(jié)論中,所有正確的序號(hào)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長(zhǎng)線上,∠CAD=45°.

(1)若AB=4,求弧CD的長(zhǎng).

(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知正方形ABCD,E是線段BC上一點(diǎn),N是線段BC延長(zhǎng)線上一點(diǎn),以AE為邊在直線BC的上方作正方形AEFG.

圖(1) 圖(2)

(1)連接GD,求證:DG=BE;

(2)連接FC,求∠FCN的度數(shù);

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=m,BC=n(m、n為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線BC的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含m、n的代數(shù)式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)畫(huà)圖說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案