【題目】如圖所示,四邊形ABCD是平行四邊形,按下列條件得到的四邊形BFDE是平行四邊形的個(gè)數(shù)是(  )

①圖甲,DEAC,BFAC ②圖乙,DE平分∠ADCBF平分∠ABC

③圖丙,EAB的中點(diǎn),FCD的中點(diǎn) ④圖丁,EAB上一點(diǎn),EFAB

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】C

【解析】

①由DEAC,BFAC,可得DEBF,又由四邊形ABCD是平行四邊形,利用ACDACB的面積相等,即可判定DE=BF,然后由一組對(duì)邊平行且相等的四邊形是平行四邊形,證得四邊形BFDE是平行四邊形;
②由四邊形ABCD是平行四邊形,DE平分∠ADC,BF平分∠ABC,易證得ADE≌△CBF,則可判定DEBFDE=BF,繼而證得四邊形BFDE是平行四邊形;
③由四邊形ABCD是平行四邊形,EAB的中點(diǎn),FCD的中點(diǎn),易證得DFBE,DF=BE,繼而證得四邊形BFDE是平行四邊形;
④無(wú)法確定DF=BE,只能證得DFBE,故不能判定四邊形BFDE是平行四邊形.

①∵四邊形ABCD是平行四邊形,

DEACBFAC,

DEBF,

DE=BF,

∴四邊形BFDE是平行四邊形;

②∵四邊形ABCD是平行四邊形,

∴∠ADC=ABC,AD=CB,ADBC,

∴∠DAE=BCF,

DE平分∠ADC,BF平分∠ABC,

∴∠ADE=CBF,

ADECBF中,

ADECBF(ASA),

DE=BF,∠AED=BFC,

∴∠DEF=BFE,

DEBF,

∴四邊形BFDE是平行四邊形;

③證明:∵四邊形ABCD是平行四邊形,

ABCD,AB=CD

EAB的中點(diǎn),FCD的中點(diǎn),

DF=BE,

∴四邊形BFDE是平行四邊形;

④∵四邊形ABCD是平行四邊形,

ABCDAB=CD,

EAB上一點(diǎn),EFAB,

無(wú)法判定DF=BE

∴四邊形BFDE不一定是平行四邊形。

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,正方形A′B′C′D′的頂點(diǎn)A′與點(diǎn)O重合,A′B′BC于點(diǎn)EA′D′CD于點(diǎn)F.

1)求證:OE=OF;

2)若正方形ABCD的邊長(zhǎng)為1,求兩個(gè)正方形重疊部分的面積;

3)若正方形 A′B′C′D′繞著O點(diǎn)旋轉(zhuǎn),EF的長(zhǎng)度何時(shí)最小,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】安全教育平臺(tái)是中國(guó)教育學(xué)會(huì)為方便學(xué)長(zhǎng)和學(xué)生參與安全知識(shí)活動(dòng)、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長(zhǎng)和學(xué)生參與防溺水教育的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學(xué)生自己參與;B.家長(zhǎng)和學(xué)生一起參與;

C.僅家長(zhǎng)自己參與; D.家長(zhǎng)和學(xué)生都未參與.

請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)在這次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算C類所對(duì)應(yīng)扇形的圓心角的度數(shù);

(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校2000名學(xué)生中家長(zhǎng)和學(xué)生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,邊長(zhǎng)為a的正方形發(fā)生形變后成為邊長(zhǎng)為a的菱形,如果這個(gè)菱形的一組對(duì)邊之間的距離為h,我們把的值叫做這個(gè)菱形的形變度.例如,當(dāng)形變后的菱形是如圖2形狀(被對(duì)角線BD分成2個(gè)等邊三角形),則這個(gè)菱形的形變度2.如圖3,正方形由16個(gè)邊長(zhǎng)為1的小正方形組成,形變后成為菱形,AEFA、E、F是格點(diǎn))同時(shí)形變?yōu)?/span>A′E′F′,若這個(gè)菱形的形變度”k,則SA′E′F′__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某修理廠需要購(gòu)進(jìn)甲、乙兩種配件,經(jīng)調(diào)查,每個(gè)甲種配件的價(jià)格比每個(gè)乙種配件的價(jià)格少0.4萬(wàn)元,且用16萬(wàn)元購(gòu)買的甲種配件的數(shù)量與用24萬(wàn)元購(gòu)買的乙種配件的數(shù)量相同

(1)求每個(gè)甲種配件、每個(gè)乙種配件的價(jià)格分別為多少萬(wàn)元;

(2)現(xiàn)投入資金80萬(wàn)元,根據(jù)維修需要預(yù)測(cè),甲種配件要比乙種配件至少要多22件,問(wèn)乙種配件最多可購(gòu)買多少件

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD頂點(diǎn)A的坐標(biāo)為(0,4),B點(diǎn)在x軸上,對(duì)角線AC,BD交于點(diǎn)M,OM=6,則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ACB=90°,A=30°,CD為ABC的中線,作COAB于O,點(diǎn)E在CO延長(zhǎng)線上,DE=AD,連接BE、DE.

(1)求證:四邊形BCDE為菱形;

(2)把ABC分割成三個(gè)全等的三角形,需要兩條分割線段,若AC=6,求兩條分割線段長(zhǎng)度的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線ACBD交于點(diǎn)O,過(guò)點(diǎn)O的直線EFAD于點(diǎn)E,交BC于點(diǎn)F

1)求證:AOE≌△COF;

2)若∠EOD=30°,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)社會(huì)實(shí)踐小組去某商場(chǎng)調(diào)查商品的銷售情況,了解到該商場(chǎng)以每件80元的價(jià)格購(gòu)進(jìn)了某品牌襯衫500件,并以每件120元的價(jià)格銷售了400件,商場(chǎng)準(zhǔn)備采取促銷措施,將剩下的襯衫降價(jià)銷售.

1)每件襯衫降價(jià)多少元時(shí),銷售完這批襯衫正好達(dá)到盈利45%的預(yù)期目標(biāo)?

2)在(1)的條件下,某公司給員工發(fā)福利,在該商場(chǎng)促銷錢購(gòu)買了20件該品牌的襯衫發(fā)給員工,后因?yàn)橛行聠T工加入,又要購(gòu)買5件該襯衫,購(gòu)買這5件襯衫時(shí)恰好趕上該商場(chǎng)進(jìn)行促銷活動(dòng),求該公司購(gòu)買這25件襯衫的平均價(jià)格.

查看答案和解析>>

同步練習(xí)冊(cè)答案