【題目】某中學(xué)為了籌備校慶活動,準(zhǔn)備印制一批校慶紀(jì)念冊。該紀(jì)念冊分A、B兩種,每冊都需要10張8K大小的紙,其中A紀(jì)念冊有4張彩色頁和6張黑白頁組成;B紀(jì)念冊有6張彩色頁和4張黑白頁組成。印制這批紀(jì)念冊的總費(fèi)用由制版費(fèi)和印制費(fèi)兩部分組成,制版費(fèi)與印數(shù)無關(guān),價格為:彩色頁300元∕張,黑白頁50元∕張;印制費(fèi)與總印數(shù)的關(guān)系見下表。
總印數(shù)(單位:千冊) | ||
彩色(單位:元∕張) | 2.2 | 2.0 |
黑白(單位:元∕張) | 0.7 | 0.5 |
【1】印制這批紀(jì)念冊的制版費(fèi)為 元。
【2】若印制A、B兩種紀(jì)念冊各2千冊,則共需多少費(fèi)用?
【3】如果該校共印制了A、B兩種紀(jì)念冊6千冊,一共花費(fèi)了75500元,則該校印制了A、B兩種紀(jì)念冊各多少冊?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)E為邊AB上任意一點(diǎn),點(diǎn)D在邊CB的延長線上,且ED=EC.
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(如圖1),則有AE DB(填“>”“<”或“=”);
(2)猜想AE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個質(zhì)地均勻的正12面體,12個面上分別寫有1~12這12個整數(shù)(每個面只有一個整數(shù)且互不相同).投擲這個正12面體一次,記事件A為“向上一面的數(shù)字是2或3的整數(shù)倍”,記事件B為“向上一面的數(shù)字是3的整數(shù)倍”,請你判斷等式P(A)=+P(B)是否成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《列子》中《歧路亡羊》寫道:
楊子之鄰人亡羊,既率其黨,又請楊子之豎追之。楊 子曰:“嘻!亡一羊,何追者之眾?”鄰人日:“多歧路。”既 反,問:“獲羊乎?”日:“亡之矣!痹唬骸稗赏鲋?”曰:“歧路 之中又有歧焉,吾不知所之,所以反也.”
如圖,假定所有的分叉口都各有兩條新的歧路,并且丟失的羊走每條歧路的可能性都相等.
(1)到第n次分歧時,共有多少條歧路?以當(dāng)羊走過n個三叉路口后,找到羊的概率是多少?
(2)當(dāng)n=5時,派出6個人去找羊,找到羊的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有紅、黃、白三種顏色球共100個,它們除顏色外都相同,其中黃球個數(shù)是白球個數(shù)的2倍少5個.已知從袋中摸出一個球是紅球的概率是.
(1)求袋中紅球的個數(shù);
(2)求從袋中摸出一個球是白球的概率;
(3)取走10個球(其中沒有紅球)后,求從剩余的球中摸出一個球是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-1,2)、B(-3,0)、C(0,0)
(1)請直接寫出點(diǎn)A關(guān)于x軸對稱的點(diǎn)的坐標(biāo);
(2)以C為位似中心,在x軸下方作△ABC的位似圖形,使放大前后位似比為1:2,請畫出圖形,并求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程x2 +(2m+1)x+m2-4=0.
(1)若此方程有兩個不相等的實(shí)數(shù)根,求m的取值范圍.
(2)若方程的兩個根分別是平行四邊形的一組鄰邊的長,該平行四邊形為菱形,求這個四邊形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com