【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( )
A.3個B.2個C.1個D.0個
【答案】B
【解析】
首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點可得c<0,再根據(jù)二次函數(shù)的對稱軸x=-,結合圖象與x軸的交點可得對稱軸為x=1,結合對稱軸公式可判斷出①的正誤;根據(jù)對稱軸公式結合a的取值可判定出b<0,根據(jù)a、b、c的正負即可判斷出②的正誤;利用a-b+c=0,求出a-2b+4c<0,再利用當x=4時,y>0,則16a+4b+c>0,由①知,b=-2a,得出8a+c>0.
根據(jù)圖象可得:a>0,c>0,對稱軸:.
①∵它與x軸的兩個交點分別為(﹣1,0),(3,0),∴對稱軸是x=1,
∴.∴b+2a=0.故命題①錯誤.
②∵a>0,,∴b<0.
又c<0,∴abc>0.故命題②錯誤.
③∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c.
∵a﹣b+c=0,∴4a﹣4b+4c=0.∴﹣4b+4c=﹣4a.
∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0.故命題③正確.
④根據(jù)圖示知,當x=4時,y>0,∴16a+4b+c>0.
由①知,b=﹣2a,∴8a+c>0.故命題④正確.
∴正確的命題為:①③三個.
故選B
科目:初中數(shù)學 來源: 題型:
【題目】有一種落地晾衣架如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調整晾衣桿的高度. 圖2是支撐桿的平面示意圖,AB和CD分別是兩根不同長度的支撐桿,夾角∠BOD=. 若AO=85cm,BO=DO=65cm. 問: 當,較長支撐桿的端點離地面的高度約為_____.(參考數(shù)據(jù):,.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,tanB=3,點D為邊AB上一動點,在直線DC上方作∠EDC=∠ECD=∠B,得到△EDC,則CE最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上學習了圓周角的概念和性質:“頂點在圓上,兩邊與圓相交”,“同弧所對的圓周角相等”,小明在課后繼續(xù)對圓外角和圓內角進行了探究.
下面是他的探究過程,請補充完整:
定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內,兩邊與圓相交的角叫做圓內角.如圖1,∠M為所對的一個圓外角.
(1)請在圖2中畫出所對的一個圓內角;
提出猜想
(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內角______這條弧所對的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;
問題解決
經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.
(4)如圖3,F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)先化簡,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知拋物線y=ax2+bx+c的對稱軸為x=2,且經(jīng)過點(1,4)和(5,0),試求該拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標:
(3)在拋物線上存在點P(不與C重合),使得△APB的面積與△ACB的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點.
(1)求證:△ADP≌△ECP;
(2)若BP=nPK,試求出n的值;
(3)作BM丄AE于點M,作KN丄AE于點N,連結MO、NO,如圖2所示,請證明△MON是等腰三角形,并直接寫出∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時刻,動點從點出發(fā)沿方向以的速度向點勻速運動;同時,動點從點出發(fā)沿方向以的速度向點勻速運動,問:
(1)經(jīng)過多少時間,的面積等于矩形面積的?
(2)是否存在時間t,使的面積達到3.5cm2,若存在,求出時間t,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣3x+4.
(1)配方成y=a(x﹣h)2+k的形式;
(2)求出它的圖象的開口方向對稱軸頂點坐標;
(3)求當y<0時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com