【題目】如圖,在△ABC和△DCB中,若∠ACB=∠DBC,則不能證明兩個(gè)三角形全等的條件是( )
A.∠ABC=∠DCBB.∠A=∠DC.AB=DCD.AC=DB
【答案】C
【解析】
全等三角形的判定方法有SAS,ASA,AAS,SSS,根據(jù)定理逐個(gè)判斷即可.
A、∠ACB=∠DBC,∠ABC=∠DCB,BC=CB,符合ASA,即能推出△ABC≌△DCB,故本選項(xiàng)錯(cuò)誤;
B、∠A=∠D,BC=CB,∠ACB=∠DBC,符合AAS,即能推出△ABC≌△DCB,故本選項(xiàng)錯(cuò)誤;
C、∠ACB=∠DBC,AB=DC,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本選項(xiàng)正確;
D、AC=DB,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本選項(xiàng)錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解決問題:
如圖等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù).為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)≌,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出______;
基本運(yùn)用
請(qǐng)你利用第題的解答思想方法,解答下面問題:已知如圖,中,,,E、F為BC上的點(diǎn)且,求證:;
能力提升
如圖,在中,,,,點(diǎn)O為內(nèi)一點(diǎn),連接AO,BO,CO,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°, 點(diǎn)D在AB上,且CD=BD.
(1)求證:點(diǎn)D是AB的中點(diǎn).
(2)以CD為對(duì)稱軸將△ACD翻折至△A'CD,連接BA',若∠DBC=a,求∠CB A'的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),延長BP至點(diǎn)D,使得AD=AP,當(dāng)AD⊥AB時(shí),過點(diǎn)D作DE⊥AC于E.
(1)求證:∠CBP=∠ABP;
(2)若AB-BC=4,AC=8.求AB的長度和DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));
②對(duì)稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ADE中,∠ADE=90°,點(diǎn)B是AE的中點(diǎn),過點(diǎn)D作DC∥AE,DC=AB,連結(jié)BD、CE.
(1)求證:四邊形BDCE是菱形;
(2)若AD=8,BD=6,求菱形BDCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分△ABC的周長,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,∠A=30°,AB邊中點(diǎn)D到BC邊距離為3 cm,現(xiàn)在AC邊找點(diǎn)E,使BE+ED值最小,則BE+ED的最小值是________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長線交AD于F.
(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);
(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.
①請(qǐng)你在圖2中補(bǔ)全圖形;
②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com