拋物線的對(duì)稱軸是
A.直線 x=2      B. 直線x=" -2"       C.直線x= -3      D.直線x=3
A

試題分析:拋物線的頂點(diǎn)坐標(biāo)為(2,3),頂點(diǎn)坐標(biāo)就是拋物線與其對(duì)稱軸的交點(diǎn),所以拋物線的對(duì)稱軸與其頂點(diǎn)坐標(biāo)的橫坐標(biāo)的值相等,所以拋物線的對(duì)稱軸是直線 x=2
點(diǎn)評(píng):本題考查拋物線,解答本題的關(guān)鍵是掌握拋物線的概念,性質(zhì),會(huì)根據(jù)拋物線的解析式求其對(duì)稱軸
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對(duì)稱軸與x軸交于點(diǎn)E.
①若線段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線上一點(diǎn)M,作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩直線l1,l2分別經(jīng)過(guò)點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y軸正半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l1交于點(diǎn)K,如圖所示.

(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對(duì)稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問(wèn)這三條線段有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請(qǐng)找出使△MCK為等腰三角形的點(diǎn)M,簡(jiǎn)述理由,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司經(jīng)銷某品牌運(yùn)動(dòng)鞋,年銷售量為10萬(wàn)雙,每雙鞋按250元銷售,可獲利25﹪設(shè)每雙鞋的成本價(jià)為元.

(1)試求的值;
(2)為了擴(kuò)大銷售量,公司決定拿出一定量的資金做廣告,根據(jù)市場(chǎng)調(diào)查,若每年投入廣告費(fèi)為(萬(wàn)元)時(shí),產(chǎn)品的年銷售量將是原來(lái)年銷售量的倍,且之間的關(guān)系滿足.請(qǐng)根據(jù)圖象提供的信息,求出之間的函數(shù)關(guān)系式;
(3)在(2)的條件下求年利潤(rùn)S(萬(wàn)元)與廣告費(fèi)(萬(wàn)元)之間的函數(shù)關(guān)系式,并請(qǐng)回答廣告費(fèi)(萬(wàn)元)在什么范圍內(nèi),公司獲得的年利潤(rùn)S(萬(wàn)元)隨廣告費(fèi)的增大而增多?(注:年利潤(rùn)S=年銷售總額-成本費(fèi)-廣告費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為 [m,1-m,-1]的函數(shù)的一些結(jié)論:
① 當(dāng)m=-1時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(1,0);
② 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于1;
③ 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減;
④ 不論m取何值,函數(shù)圖象經(jīng)過(guò)一個(gè)定點(diǎn).
其中正確的結(jié)論有            ( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線y=-x2bx+c經(jīng)過(guò)點(diǎn)A(0,1)、B(3,)兩點(diǎn),BC⊥x軸,垂足為C.點(diǎn)P是線段AB上的一動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.

(1)求此拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AM、BM,設(shè)△AMB的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最大值;
(3)連結(jié)PC,當(dāng)t為何值時(shí),四邊形PMBC是菱形.(10分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸相交于B,C兩點(diǎn),與y軸相交于點(diǎn)A,P(2a,-4a2+7a+2)(a是實(shí)數(shù))在拋物線上,直線y=k x +b經(jīng)過(guò)A,B兩點(diǎn).

(1)求直線AB的解析式;
(2)平行于y軸的直線x=2交直線AB于點(diǎn)D,交拋物線于點(diǎn)E
①直線x=t(0≤t≤4)與直線AB相交F,與拋物線相交于點(diǎn)G.若FGDE=3∶4,求t的值;
②將拋物線向上平移m(m>0)個(gè)單位,當(dāng)EO平分∠AED時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商廈將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)50x元,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出yx之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(7,0),點(diǎn)B的坐標(biāo)為(3,4),

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)將線段AB繞A點(diǎn)順時(shí)針旋轉(zhuǎn)75°至AC,直接寫出點(diǎn)C的坐標(biāo).
(3)在y軸上找一點(diǎn)P,第一象限找一點(diǎn)Q,使得以O(shè)、B、Q、P為頂點(diǎn)的四邊形是菱形,求出點(diǎn)Q的坐標(biāo);
(4)△OAB的邊OB上有一動(dòng)點(diǎn)M,過(guò)M作MN//OA交AB于N,將△BMN沿MN翻折得△DMN,設(shè)MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數(shù)關(guān)系式,并求出重疊部分面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案