【題目】某運輸公司現(xiàn)將一批152噸的貨物運往A,B兩地,若用大小貨車15輛,則恰好能一次性運完這批貨.已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運往AB兩地的運費如下表所示:

目的地(車型)

A(/)

B(/)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛.(用二元一次方程組解答)

(2)現(xiàn)安排其中的10輛貨車前往A地,其余貨車前往B地,設(shè)前往A地的大貨車為x輛,前往A,B兩地總費用為w元,試求wx的函數(shù)解析式.

【答案】(1)中大貨車用8輛,小貨車用7輛;(2)w100x+9400(3x8,且x為整數(shù))

【解析】

1)根據(jù)表格列出二元一次方程,再根據(jù)二元一次方程的解法計算即可.

2)根據(jù)費用的計算,列出費用和大貨車x的關(guān)系即可.

(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:

,

解得:

故這15輛車中大貨車用8輛,小貨車用7輛.

(2)設(shè)前往A地的大貨車為x輛,前往AB兩地總費用為w元,則wx的函數(shù)解析式:w800x+900(8x)+400(10x)+600[7(10x)]100x+9400(3x8,且x為整數(shù))

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22(k1)x+ k2+3=0的兩實數(shù)根為x1,x2,設(shè)t=,則t的最大值為(   )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、圖②、圖③都是的網(wǎng)格,每個小正方形的頂點稱為格點.頂點、均在格點上,在圖①、圖②、圖③給定網(wǎng)格中按要求作圖,并保留作圖痕跡.

1)在圖①中畫出邊上的中線;

2)在圖②中確定一點,使得點邊上,且滿足

3)在圖③中畫出,使得是位似圖形,且點為位似中心,點分別在、邊上,位似比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB8,BC6,點EAD的中點,點FAB上一動點.將△AEF沿直線EF折疊,點A落在點A'處.在EF上任取一點G,連接GCGA',CA’,則△CGA'的周長的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別與BC,AC交于點D,E,過點DDFAC,垂足為點F

1)求證:直線DFO的切線;

2)求證:BC24CFAC;

3)若O的半徑為2,∠CDF15°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,分別以點A (﹣2,3),B3,4)為圓心,以12為半徑作A、BM、N分別是A、B上的動點,Px軸上的動點,則PM+PN的最小值等于(  )

A.B.+3C.3D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,EF分別為BC,CD的中點,連接AE,BF,交點為G.若正方形的邊長為2

1)求證:AEBF;

2)將△BCF沿BF對折,得到△BPF(如圖2),延長FPBA的延長線于點Q,求AQ的長;

3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AMBF相交于點N,求四邊形MNGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.學(xué)校采取隨機抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

1)補全條形統(tǒng)計圖,補全扇形統(tǒng)計圖中樂器所占的百分比;

2)本次調(diào)查學(xué)生選修課程的眾數(shù)__________

3)若該校有1200名學(xué)生,請估計選修繪畫的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(03),∠ABO30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為(  )

A. (,)B. (2,)C. (,)D. (3)

查看答案和解析>>

同步練習(xí)冊答案