【題目】如圖,在中, ,,的中垂線,的中垂線,已知的長為,則陰影部分的面積為(

A.B.C.D.

【答案】B

【解析】

根據線段垂直平分線的性質可得NBNAQAQC,然后求出∠ANQ30°,∠AQN60°,進而得到∠NAQ90°,然后根據含30度角的直角三角形的性質設AQxNQ2x,得到AN,結合求出x的值,得到AQ、AN的值,進而利用三角形面積公式可得答案.

解:∵的中垂線,的中垂線,

NBNAQAQC,

∴∠NBA=∠NAB=15°,∠QAC=∠QCA30°,

∴∠ANQ15°15°30°,∠AQN30°30°60°,

∴∠NAQ180°30°60°90°,

AQx,則NQ2x,

AN

BCNBNQQCANNQAQ3x,

x1,

AQ1,AN,

∴陰影部分的面積=,

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(2m+1)x+m2+=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若m為(1)中符合條件的最小正整數(shù),設此時對應的一元二次方程的兩個實數(shù)根分別為α,β,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,已知正方形ABCD,點MN分別是邊BCCD上的點,且BM=CN,連接AMBN,交于點P.猜想AMBN的位置關系,并證明你的結論;

2)如圖2,將圖(1)中的APB繞著點B逆時針旋轉90,得到A′P′B,延長A′P′AP于點E,試判斷四邊形BPEP′的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為50°,則該三角形的底角為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙O,分別交AC、BC于點DE,點FAC的延長線上,且∠A2CBF

(1)求證:BF與⊙O相切.

(2)BCCF4,求BF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(10,0),點B的坐標為(8,0),點C,D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°

(1)若點C在優(yōu)弧BD上,求∠ACD的大。

(2)若點C在劣弧BD上,直接寫出∠ACD的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DBC上,且BDBA,點EBC的延長線上,且CECA

1)若∠BAC90°(圖1),求∠DAE的度數(shù);

2)若∠BAC120°(圖2),求∠DAE的度數(shù);

3)當∠BAC90°時,探求∠DAE與∠BAC之間的數(shù)量關系,直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點EDFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測DGAG間有何數(shù)量關系?請說明理由.

查看答案和解析>>

同步練習冊答案