【題目】如圖,一次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0),并與反比例函數(shù)()的圖像交于B(m,4)
(1)求的值;
(2)以AB為一邊,在AB的左側(cè)作正方形,求C點(diǎn)坐標(biāo);
(3)將正方形沿著軸的正方向,向右平移n個(gè)單位長度,得到正方形,線段的中點(diǎn)為點(diǎn),若點(diǎn)和點(diǎn)同時(shí)落在反比例函數(shù)的圖像上,求n的值.
【答案】(1)k1=4;(2)C點(diǎn)坐標(biāo)為(-3,6);(3)n=.
【解析】
(1)把A點(diǎn)坐標(biāo)代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)過B作BF⊥x軸于F,過C作CG⊥FB,交FB的延長線于G,利用AAS可證明△CBG≌△BAF,可得AF=BG,CG=BF,根據(jù)A、B兩點(diǎn)坐標(biāo)即可得C點(diǎn)坐標(biāo);(3)由A、B、C三點(diǎn)坐標(biāo)可得向右平移n個(gè)單位后A1、B1、C1的坐標(biāo),即可得E點(diǎn)坐標(biāo),根據(jù)k2=xy列方程即可求出n值.
(1)∵一次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0),
∴-2+b=0,
解得:b=2,
∵點(diǎn)B(m,4)在一次函數(shù)y=2x+2上,
∴4=2m+2,
解得:m=1,
∵B(1,4)在反比例函數(shù)圖象上,
∴k1=4.
(2)如圖,過B作BF⊥x軸于F,過C作CG⊥FB,交FB的延長線于G,
∵A(-1,0),B(1,4),
∴AF=2,BF=4,
∴∠GCB+∠CBG=90°,
∵四邊形ABCD是正方形,
∴∠ABC=90°,
∴∠ABF+∠CBG=90°,
∴∠GCB=∠ABF,
又∵BC=AB,∠AFB=∠CGB=90°,
∴△CBG≌△BAF,
∴BG=AF=2,CG=BF=4,
∴GF=6,
∵在AB的左側(cè)作正方形ABCD,
∴C點(diǎn)坐標(biāo)為(-3,6).
(3)∵正方形ABCD沿x軸的正方向,向右平移n個(gè)單位長度,
∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
∵線段A1B1的中點(diǎn)為點(diǎn)E,
∴E(n,2),
∵點(diǎn)和點(diǎn)E同時(shí)落在反比例函數(shù)的圖像上,
∴k2=2n=6(-3+n)
解得:n=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A,B,C(如圖),按要求完成下列問題:
(1)畫出直線BC、射線CA、線段AB.
(2)過C點(diǎn)畫CD⊥AB,垂足為點(diǎn)D.
(3)在以上的圖中,互余的角為 ,互補(bǔ)的角為 .(各寫出一對即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,分別設(shè)P,Q,E,F為邊AB,BC,AD,CD的中點(diǎn),設(shè)T為線段EF的三等分點(diǎn),則△PQT與ABCD的面積之比是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)2+(﹣1)=_____.
(2)(﹣2008)×0=_____.
(3)=_____.
(4)=_____.
(5)2a2﹣3a2=_____.
(6)﹣2(x﹣1)=_____.
(7)方程7x=﹣2的解x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在研究反比例函數(shù)y=﹣的圖象時(shí),我們發(fā)現(xiàn)有如下性質(zhì):
(1)y=﹣的圖象是中心對稱圖形,對稱中心是原點(diǎn).
(2)y=﹣的圖象是軸對稱圖形,對稱軸是直線y=x,y=﹣x.
(3)在x<0與x>0兩個(gè)范圍內(nèi),y隨x增大而增大;
類似地,我們研究形如:y=﹣+3的函數(shù):
(1)函數(shù)y=﹣+3圖象是由反比例函數(shù)y=﹣圖象向____平移______個(gè)單位,再向_______平移______個(gè)單位得到的.
(2)y=﹣+3的圖象是中心對稱圖形,對稱中心是______.
(3)該函數(shù)圖象是軸對稱圖形嗎?如果是,請求出它的對稱軸,如果不是,請說明理由.
(4)對于函數(shù)y=,x在哪些范圍內(nèi),y隨x的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,表示A、B兩點(diǎn)之間的距離。當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí)(假設(shè)A在原點(diǎn)),如圖①,;
當(dāng)A、B兩點(diǎn)都在原點(diǎn)右側(cè)時(shí),如圖②,;
當(dāng)AB兩點(diǎn)都在原點(diǎn)左側(cè)時(shí),如圖③,;
當(dāng)AB兩點(diǎn)在原點(diǎn)兩側(cè)時(shí),如圖④,;
請根據(jù)上述結(jié)論,回答下列問題:
(1)數(shù)軸上表示2和5的兩點(diǎn)問距離是______,數(shù)軸上表示2和-6的兩點(diǎn)間距高是_________,數(shù)軸上表示-1和3的兩點(diǎn)間距離是____________.
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離可表示為_________,若|AB|=2,則x的值為_____________.
(3)當(dāng)取最小值時(shí),請寫出所有符合條件的x的整數(shù)值_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的邊長是4,∠DAB=60,點(diǎn)M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長為_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+與x軸、y軸分別交于點(diǎn)A、B,在坐標(biāo)軸上找點(diǎn)P,使△ABP為等腰三角形,則點(diǎn)P的個(gè)數(shù)為( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A,B兩點(diǎn)之間的距離表示為│AB│.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|ab|;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB||OA|=|b||a|=ba=|ab|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB||OA|=|b||a|=b(a)=ab=│a-b│;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|ab|;綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|ab|.
(1)回答下列問題:
①數(shù)軸上表示3和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示5和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示10和3的兩點(diǎn)之間的距離是______;
②數(shù)軸上表示x和4的兩點(diǎn)A和B之間的距離為______,如果|AB|=6,那么x為______;
③當(dāng)代數(shù)式|x+2|+|x3|取最小值______時(shí),相應(yīng)的x的取值范圍是______.
(2)a、b在數(shù)軸上位置如圖所示,請化簡式子│a+1│-│2b-2│-│a+b│
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com