【題目】已知,Rt△ABC中,∠C=90.
(1)當(dāng)∠B=60時(shí),=_______;當(dāng)∠A=45時(shí),=_______.
(2)當(dāng)∠B=2∠A時(shí),求的值;
(3)若AB=2BC,求∠A的度數(shù).
【答案】(1),1(2)(3)30°
【解析】
(1)根據(jù)三角函數(shù)的定義即可求出在Rt△ABC中,當(dāng)∠B=60時(shí)的值和∠A=45時(shí)的值.
(2)根據(jù)∠C=90,∠B=2∠A可求得∠A 的度數(shù),后根據(jù)三角函數(shù)的定義可求出的值.
(3)根據(jù)∠C=90,AB=2BC, 可求出的值,后根據(jù)反三角函數(shù)的定義可求出∠A的度數(shù).
(1)在 Rt△ABC中,∠C=90,
當(dāng)∠B=60時(shí),
在Rt△ABC中,∠C=90
∠A=45時(shí),
(2)在 Rt△ABC中,∠C=90, ∠B=2∠A
即
(3)在 Rt△ABC中,∠C=90,AB=2BC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△DCE有公共頂點(diǎn)C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當(dāng)點(diǎn)D在BC延長(zhǎng)線(xiàn)上時(shí).
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關(guān)系,并說(shuō)明理由.
(2)如圖2,△CDE從(1)中位置開(kāi)始繞點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D落在BC邊上時(shí)停止.
①若∠A=60°,記旋轉(zhuǎn)的度數(shù)為,當(dāng)為何值時(shí),DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點(diǎn)F,求整個(gè)運(yùn)動(dòng)過(guò)程中,F在BC上的運(yùn)動(dòng)路程(用含a, b, c的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿(mǎn)足2≤x≤5時(shí),與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在ABCD中,DH⊥AB于點(diǎn)H,CD的垂直平分線(xiàn)交CD于點(diǎn)E,交AB于點(diǎn)F,AB=6,DH=4,BF:FA=1:5.
(1)如圖2,作FG⊥AD于點(diǎn)G,交DH于點(diǎn)M,將△DGM沿DC方向平移,得到△CG′M′,連接M′B.
①求四邊形BHMM′的面積;
②直線(xiàn)EF上有一動(dòng)點(diǎn)N,求△DNM周長(zhǎng)的最小值.
(2)如圖3,延長(zhǎng)CB交EF于點(diǎn)Q,過(guò)點(diǎn)Q作QK∥AB,過(guò)CD邊上的動(dòng)點(diǎn)P作PK∥EF,并與QK交于點(diǎn)K,將△PKQ沿直線(xiàn)PQ翻折,使點(diǎn)K的對(duì)應(yīng)點(diǎn)K′恰好落在直線(xiàn)AB上,求線(xiàn)段CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鉛筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元;
(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案;
(3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大;最大利潤(rùn)是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D,E,F分別為BC,AD,AE的中點(diǎn),且S△ABC=4cm2,則陰影部分面積S=( 。cm2.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)l1∥l2,點(diǎn)A、B在直線(xiàn)l1上,點(diǎn)C、D在直線(xiàn)l2上,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直線(xiàn)BE、DE交于點(diǎn)E.
(1)寫(xiě)出∠EDC的度數(shù)_____;
(2)試求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線(xiàn)段BC向右平行移動(dòng),其他條件不變,請(qǐng)直接寫(xiě)出∠BED的度數(shù)(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線(xiàn),交于 O 點(diǎn).
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com