【題目】下列語句:11的平方根。帶根號的數(shù)都是無理數(shù)。1的立方根是-1。的立方根是2。⑤(2)2的算術(shù)平方根是2125的立方根是±5。有理數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng)。其中正確的有( )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

【答案】B

【解析】

根據(jù)平方根的意義求出±a≥0),即可判斷,根據(jù)無理數(shù)的意義即可判斷;根據(jù)立方根的意義求出,即可判斷③④⑥,根據(jù)算術(shù)平方根求出

a≥0),即可判斷;根據(jù)實(shí)數(shù)和數(shù)軸上的點(diǎn)能建立一一對應(yīng)關(guān)系,即可判斷

解:1的平方根是±1∴①正確;

=2,但是有理數(shù),∴②錯(cuò)誤;

-1的立方根是-1∴③正確;

=2,2的立方根是,∴④錯(cuò)誤;

-22=44的算術(shù)平方根是=2,∴⑤正確;

-125的立方根是-5,∴⑥錯(cuò)誤;

實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),∴⑦錯(cuò)誤;

正確的有3個(gè).

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建文明城市,一輛城管汽車在一條東西方向的公路上巡邏.如果規(guī)定向東為正,向西為負(fù),從出發(fā)點(diǎn)開始它所行走的記錄為(長度單位:千米)

1)此時(shí)這輛城管汽車的司機(jī)應(yīng)如何向隊(duì)長描述他的位置?

2)如果隊(duì)長命令他馬上返回出發(fā)點(diǎn),那么這次巡邏(含返回)共耗油多少升(已知每千米耗油)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是用4個(gè)全等的小長方形與1個(gè)小正方形密鋪而成的正方形圖案.已知該圖案的面積為49,小正方形的面積為4,若分別用x,y(x >y)表示小長方形的長和寬,則下列關(guān)系式中不正確的是( )

A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線,∠CBD=75°,

(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為E,交ADF;(不要求寫作法,保留作圖痕跡)

(2)在(1)條件下,連接BF,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC120°,若DEFG分別垂直平分AB,ACAEF的周長為10cm,求BC的長及∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn),點(diǎn)E、F分別是ABAC邊上的點(diǎn),且DEDF.

1)證明:BE+CF=EF2

2)若BE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完《有理數(shù)》后,小奇對運(yùn)算產(chǎn)生了濃厚的興趣.借助有理數(shù)的運(yùn)算,定義了一種新運(yùn)算,規(guī)則如下:aba×b+2×a

1)求2⊕(﹣1)的值;

2)求﹣3⊕(﹣4)的值;

3)試用學(xué)習(xí)有理數(shù)的經(jīng)驗(yàn)和方法來探究這種新運(yùn)算是否具有交換律?請寫出你的探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買3個(gè)足球和2個(gè)籃球共需170元,購買2個(gè)足球和5個(gè)籃球共需260元.

1)購買一個(gè)足球、一個(gè)籃球各需多少元?(提示:列方程組解答)

2)根據(jù)該中學(xué)的實(shí)際情況,需一次性購買足球和籃球共46個(gè),要求購買足球和籃球的總費(fèi)用不超過1480元,這所中學(xué)最多可以購買多少個(gè)籃球?(提示:列不等式解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,點(diǎn)P是底邊BC上一點(diǎn)且滿足PA=PB,O是△PAB的外接圓,過點(diǎn)PPDABAC于點(diǎn)D.

(1)求證:PD是⊙O的切線;

(2)若BC=8,tanABC=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案