【題目】手機上常見的wifi標志如圖所示,它由若干條圓心相同的圓弧組成,其圓心角為90°,最小的扇形半徑為1.若每兩個相鄰圓弧的半徑之差為1,由里往外的陰影部分的面積依次記為S1、S2、S3…,則S1+S2+S3+…+S20=

【答案】195π
【解析】解:S1= π12= π; S2= π(32﹣22)= π+π;
S3= π(52﹣42)= π+2π;

S20= π+19π;
∴S1+S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.
故答案為195π.
先利用扇形的面積公式分別計算出S1= π;S2= π+π;S3= π+2π,則利用此規(guī)律得到S20= π+19π,然后把它們相加即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,射線APABC的外側,點B關于AP的對稱點為D,連接CD交射線AP于點E,連接BE.

(1)根據(jù)題意補全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=ACE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示一輛汽車在直線形的公路AB上由AB行駛,C,D分別是位于公路AB兩側的村莊.

(1)該汽車行駛到公路AB上的某一位置C時距離村莊C最近,行駛到D位置時距離村莊D最近,請在公路AB上作出CD的位置(保留作圖痕跡);

(2)當汽車從A出發(fā)向B行駛時在哪一段路上距離村莊C越來越遠,而離村莊D越來越近?(只敘述結論不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的方程x2 +cosα=0有兩個相等的實數(shù)根,則銳角α為(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,B=30°,邊AB的垂直平分線DEAB于點E,交BC于點D.CD=3,則BC的長為(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司保安部去商店購買同一品牌的應急燈和手電筒,查看定價后發(fā)現(xiàn),購買一個應急燈和5個手電筒共需50元,購買3個應急燈和2個手電筒共需85元.

(1)求出該品牌應急燈、手電筒的定價分別是多少元?

(2)經(jīng)商談,商店給予該公司購買一個該品牌應急燈贈送一個該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個數(shù)是應急燈個數(shù)的2倍還多8個,且該公司購買應急燈和手電筒的總費用不超過670元,那么該公司最多可購買多少個該品牌應急燈?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班抽取6名同學參加體能測試,成績?nèi)缦拢?5,95,85,80,80,85.下列表述錯誤是( )
A.眾數(shù)是85
B.平均數(shù)是85
C.方差是20
D.極差是15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11世紀的一位阿拉伯數(shù)學家曾提出一個“鳥兒捉魚”問題:小溪邊長著兩棵棕櫚樹,恰好隔岸相望一棵棕櫚樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻以相同的速度飛去抓魚,并且同時到達目標.:這條魚出現(xiàn)的地方離比較高的棕櫚樹的樹根有多遠?

查看答案和解析>>

同步練習冊答案