【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
【答案】詳見解析.
【解析】試題分析:(1)、直接利用旋轉(zhuǎn)的性質(zhì)得出△AQE≌△AFE(SAS),進(jìn)而得出∠AEQ=∠AEF,即可得出答案;(2)、利用(1)中所求,再結(jié)合勾股定理得出答案.
試題解析:(1)、∵將△ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△ABQ, ∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
∴△AQE≌△AFE(SAS), ∴∠AEQ=∠AEF, ∴EA是∠QED的平分線;
(2)、由(1)得△AQE≌△AFE, ∴QE=EF, 在Rt△QBE中,
QB2+BE2=QE2, 則EF2=BE2+DF2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自治州自然風(fēng)景優(yōu)美,每天吸引大量游客前來游覽,經(jīng)統(tǒng)計(jì),某段時間內(nèi)來該州風(fēng)景區(qū)游覽的人數(shù)約為36000人,用科學(xué)記數(shù)法表示36000為( )
A.36×103
B.0.36×106
C.0.36×104
D.3.6×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.
(1)直接寫出函數(shù)y=圖象上的所有“整點(diǎn)”A1,A2,A3,…的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD對角線交于點(diǎn)O,點(diǎn)E是線段BO上的動點(diǎn)(與點(diǎn)B、O不重合),連接CE,過A點(diǎn)作AF∥CE交BD于點(diǎn)F,連接AE與CF.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)BA=BC=2,∠ABC=60°時,AECF能否成為正方形?若能,求出BE的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE//OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo)?
(2)若點(diǎn)D為AB中點(diǎn),求OE的長?
(3)如圖2,若點(diǎn)P(x,-2x+6)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com