【題目】(1)如圖1,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線,AD,CE相交于點(diǎn)F,
①請(qǐng)你猜想寫(xiě)出FE與FD之間的數(shù)量關(guān)系,不用說(shuō)明理由;
②判斷∠AFC與∠B的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
(2)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中其他條件不變,請(qǐng)問(wèn)你在(1)中所得FE與FD之間的數(shù)量關(guān)系是否依然成立?請(qǐng)說(shuō)明理由.
【答案】(1)①FE=FD;②∠AFC=2∠B;(2)FE=FD仍然成立,理由見(jiàn)解析.
【解析】
(1)①首先過(guò)點(diǎn)F作FM⊥BC于M.作FN⊥AB于N,連接BF,根據(jù)角平分線的性質(zhì),可得FM=FN,又由在Rt△ABC中,∠ACB=90°,∠B=60°,求得∠NEF=75°=∠MDF,又由∠DMF=∠ENF=90°,利用AAS,即可證得△DMF≌△ENF,由全等三角形的對(duì)應(yīng)邊相等,即可證得FE=FD;②由①知∠BCE=45°,∠CDF=75°,利用三角形的外角等于與它不相鄰兩個(gè)內(nèi)角的和,可求出.(2)過(guò)點(diǎn)F作FM⊥BC于M.作FN⊥AB于N,連接BF,根據(jù)角平分線的性質(zhì),可得FN=FM,由∠ABC=60°,即可求得∠MFN=120°,∠EFD=∠AFC=120°,繼而求得∠DFM=∠NFE,利用ASA,即可證得△DMF≌△ENF,由全等三角形的對(duì)應(yīng)邊相等,即可證得FE=FD.
(1)①如圖1,過(guò)點(diǎn)F作FM⊥BC于M.作FN⊥AB于N,連接BF,
∵F是角平分線交點(diǎn),
∴BF也是角平分線,
∴MF=FN,∠DMF=∠ENF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠DAC= ∠BAC=15°,
∴∠CDA=75°,
∵∠MFC=45°,∠MFN=120°,
∴∠NFE=15°,
∴∠NEF=75°=∠MDF,
在△DMF和△ENF中,
∠DMF=∠ENF,∠MDF=∠NEF,MF=NF,
∴△DMF≌△ENF(AAS),
∴FE=FD;
②由①知∠BCE=45°,∠CDF=75°,所以∠AFC=120°,因?yàn)椤?/span>B=60°,所以∠AFC=2∠B.
(2)如圖2,過(guò)點(diǎn)F作FM⊥BC于M.作FN⊥AB于N,連接BF,
∵F是角平分線交點(diǎn),
∴BF也是角平分線,
∴MF=FN,∠DMF=∠ENF=90°,
∴四邊形BNFM是圓內(nèi)接四邊形,
∵∠ABC=60°,
∴∠MFN=180°-∠ABC=120°,
∵∠CFA=180°-(∠FAC+∠FCA)=180°- (∠ABC+∠ACB)=180°- (180°-∠ABC)=180°- (180°-60°)=120°,
∴∠DFE=∠CFA=∠MFN=120°.
又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,
∴∠DFM=∠NFE,
在△DMF和△ENF中,
∴△DMF≌△ENF(ASA),
∴FE=FD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蕪湖國(guó)際動(dòng)漫節(jié)期間,小明進(jìn)行了富有創(chuàng)意的形象設(shè)計(jì).如圖1,他在邊長(zhǎng)為1的正方形ABCD內(nèi)作等邊三角形BCE,并與正方形的對(duì)角線交于F、G點(diǎn),制成如圖2的圖標(biāo).則圖標(biāo)中陰影部分圖形AFEGD的面積=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛汽車(chē)在直線形的公路上由A向B行駛,M,N分別是位于AB兩側(cè)的村莊.
(1)設(shè)汽車(chē)行駛到公路AB上點(diǎn)P的位置時(shí),距離村莊M最近,行駛到點(diǎn)Q的位置時(shí),距離村莊N最近,在圖中的公路AB上分別畫(huà)出點(diǎn)P,Q位置.
(2)在公路AB上是否存在這樣一點(diǎn)H,使汽車(chē)行駛到該點(diǎn)時(shí),與村莊M,N的距離相等?如果存在請(qǐng)?jiān)趫D中AB上畫(huà)出這一點(diǎn),如果不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(-1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤(pán)游戲時(shí),把質(zhì)地相同的兩個(gè)盤(pán)A、B分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各1次,當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時(shí)甲勝;數(shù)字之積為奇數(shù)時(shí)乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)用樹(shù)狀圖或列表的方法,求甲獲勝的概率;
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?請(qǐng)判斷并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(m+1)x+m2+2=0
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=10,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD內(nèi)兩點(diǎn)M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)
(1)A點(diǎn)到原點(diǎn)O的距離是 。
(2)將點(diǎn)C向軸的負(fù)方向平移6個(gè)單位,它與點(diǎn) 重合。
(3)連接CE,則直線CE與軸是什么關(guān)系?
(4)點(diǎn)F分別到、軸的距離是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com