【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是 .

【答案】
【解析】解:如圖,連接AM,
由題意得:CA=CM,∠ACM=60°,
∴△ACM為等邊三角形,
∴AM=CM,∠MAC=∠MCA=∠AMC=60°;
∵∠ABC=90°,AB=BC=
∴AC=2=CM=2,
∵AB=BC,CM=AM,
∴BM垂直平分AC,
∴BO=AC=1,OM=CMsin60°=
∴BM=BO+OM=1+,
故答案為:1+

如圖,連接AM,由題意得:CA=CM,∠ACM=60°,得到△ACM為等邊三角形根據(jù)AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CMsin60°=,最終得到答案BM=BO+OM=1+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張卡片(形狀、大小、顏色、質(zhì)地都相等),正面分別寫上整式x2+1,﹣x2﹣2,3.將這三張卡片背面向上洗勻,從中任意抽取一張卡片,記卡片上的整式為A,再從剩下的卡片中任意抽取一張,記卡片上的整式為B,于是得到代數(shù)式
(1)請用畫樹狀圖或列表的方法,寫出代數(shù)式所有可能的結(jié)果;
(2)求代數(shù)式恰好是分式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的直徑,點(diǎn)P在線段AB的延長線上,BP=OB=2,點(diǎn)Q在⊙O上,連接PQ.
(1)如圖①,線段PQ所在的直線與⊙O相切,求線段PQ的長

(2)如圖②,線段PQ與⊙O還有一個公共點(diǎn)C,且PC=CQ,連接OQ,AC交于點(diǎn)D.
①判斷OQ與AC的位置關(guān)系,并說明理由;
②求線段PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點(diǎn)A(2,1),點(diǎn)P是拋物線上的動點(diǎn),P的橫坐標(biāo)為m(0<m<2),過點(diǎn)P作PB⊥x軸,垂足為B,PB交OA于點(diǎn)C,點(diǎn)O關(guān)于直線PB的對稱點(diǎn)為D,連接CD,AD,過點(diǎn)A作AE⊥x軸,垂足為E.

(1)求拋物線的解析式;
(2)填空:
①用含m的式子表示點(diǎn)C,D的坐標(biāo):
C(  ,  。,D(  );
②當(dāng)m=   時,△ACD的周長最;
(3)若△ACD為等腰三角形,求出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:

(1)請直接寫出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個數(shù)所對應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,同時,點(diǎn)B和點(diǎn)C分別以每秒1個單位長度和3個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關(guān)系式表示);

請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形OBCD中的三個頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個動點(diǎn)(不與點(diǎn)B、C、D重合).若四邊形OBCD是平行四邊形時,那么∠OBA和∠ODA的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某中學(xué)九年級數(shù)學(xué)活動小組選定測量學(xué)校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1: ,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, 取1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案