閱讀以下的材料:   

 如果兩個正數(shù),即,有下面的不等式:

          當且僅當時取到等號

我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:

例:已知,求函數(shù)的最小值。

解:令,則有,得,當且僅當時,即時,函數(shù)有最小值,最小值為。

根據(jù)上面回答下列問題

①     已知,則當         時,函數(shù)取到最小值,最小值

          ;

②     用籬笆圍一個面積為的矩形花園,問這個矩形的長、寬各為多少時,所

用的籬笆最短,最短的籬笆周長是多少;

③. 已知,則自變量取何值時,函數(shù)取到最大值,最大值為多少?

①已知,則當時,函數(shù)取到最小值,最小值為;

②設(shè)這個矩形的長為x米,則寬為  米,所用的籬笆總長為y米,

根據(jù)題意得:y=2x+          由上述性質(zhì)知:x > 0, 2x≥40

此時,2x=   x=10           

答:當這個矩形的長、寬各為10米時,所用的籬笆最短,最短的籬笆是40米;                                   

③令x-2

x > 0,=x≥6

當x=3時,y最大=1/4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀以下的材料:
如果兩個正數(shù)a,b,即a>0,b>0,則有下面的不等式:
a+b
2
ab
當且僅當a=b時取到等號
我們把
a+b
2
叫做正數(shù)a,b的算術(shù)平均數(shù),把
ab
叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮栴}的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)y=x+
4
x
的最小值.
解:另a=x,b=
4
x
,則有a+b≥2
ab
,得y=x+
4
x
≥2
x•
4
x
=4
,當且僅當x=
4
x
時,即x=2時,函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問題
①已知x>0,則當x=
 
時,函數(shù)y=2x+
3
x
取到最小值,最小值為
 

②用籬笆圍一個面積為100m2的矩形花園,問這個矩形的長、寬各為多少時,所用的籬笆最短,最短的籬笆是多少?
③已知x>0,則自變量x取何值時,函數(shù)y=
x
x2-2x+9
取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀以下的材料:   

 如果兩個正數(shù),即,有下面的不等式:

          當且僅當時取到等號

我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:

例:已知,求函數(shù)的最小值。

解:令,則有,得,當且僅當時,即時,函數(shù)有最小值,最小值為。

根據(jù)上面回答下列問題

①     已知,則當         時,函數(shù)取到最小值,最小值

          ;

②     用籬笆圍一個面積為的矩形花園,問這個矩形的長、寬各為多少時,所

用的籬笆最短,最短的籬笆周長是多少;

③. 已知,則自變量取何值時,函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省鹽城市東臺實驗中學(xué)中考數(shù)學(xué)模擬試卷(6月份)(解析版) 題型:解答題

閱讀以下的材料:
如果兩個正數(shù)a,b,即a>0,b>0,則有下面的不等式:當且僅當a=b時取到等號
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮栴}的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當且僅當時,即x=2時,函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問題
①已知x>0,則當x=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省寧波市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

閱讀以下的材料:
如果兩個正數(shù)a,b,即a>0,b>0,則有下面的不等式:當且僅當a=b時取到等號
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮栴}的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當且僅當時,即x=2時,函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問題
①已知x>0,則當x=______

查看答案和解析>>

同步練習(xí)冊答案