【題目】如圖1,在平面直角坐標(biāo)系中,正方形ABCD頂點(diǎn)C3,0),頂點(diǎn)D04),過點(diǎn)AAFy軸于F點(diǎn),過點(diǎn)Bx軸的垂線交過A點(diǎn)的反比例函數(shù)yk0)的圖象于E點(diǎn),交x軸于G點(diǎn).

1)求證:CDO≌△DAF

2)求反比例函數(shù)解析式及點(diǎn)E的坐標(biāo);

3)如圖2,過點(diǎn)C作直線lAE,在直線l上是否存在一點(diǎn)P使PAC是等腰三角形?若存在,求P點(diǎn)坐標(biāo),不存在說明理由.

【答案】1)見解析;(2)為y,點(diǎn)E的坐標(biāo)為(7,4);(3)在直線l上存在一點(diǎn)P使△PAC是等腰三角形,點(diǎn)P的坐標(biāo)為(﹣36),(﹣2,5),(8,﹣5),(﹣).

【解析】

1)利用同角的余角相等可得出∠CDO=∠DAF,結(jié)合∠DOC=∠AFD90°及DCAD,可證出△CDO≌△DAF;

2)利用全等三角形的性質(zhì)可求出AFFD的長(zhǎng),進(jìn)而可得出點(diǎn)A的坐標(biāo),由點(diǎn)A的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出反比例函數(shù)解析式,同(1)可證出△CDO≌△BCG,利用全等三角形的性質(zhì)及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo);

3)由點(diǎn)A,E的坐標(biāo),利用待定系數(shù)法可求出直線AE的解析式,結(jié)合直線lAE及點(diǎn)C的坐標(biāo)可求出直線l的解析式,設(shè)點(diǎn)P的坐標(biāo)為(m,﹣m+3),結(jié)合點(diǎn)AC的坐標(biāo)可得出AC2,AP2CP2的值,分ACAPCACPPAPC三種情況可得出關(guān)于m的方程,解之即可得出點(diǎn)P的坐標(biāo).

1)證明:四邊形ABCD為正方形,

ADDC,ADC90°

∴∠ADF+∠CDO90°

∵∠ADF+∠DAF90°,

∴∠CDODAF

CDODAF中,

,

∴△CDODAFAAS).

2)解:點(diǎn)C的坐標(biāo)為(3,0),點(diǎn)D的坐標(biāo)為(0,4),

OC3,OD4

∵△CDODAF,

FAOD4,FDOC3,

OFOD+FD7,

點(diǎn)A的坐標(biāo)為(4,7).

反比例函數(shù)yk0)過點(diǎn)A,

k4×728

反比例函數(shù)解析式為y

同(1)可證出:CDO≌△BCG,

GBOC3,GCOD4

OGOC+GC7,

點(diǎn)G的坐標(biāo)為(70).

當(dāng)x7時(shí),y4

點(diǎn)E的坐標(biāo)為(74).

3)解:設(shè)直線AE的解析式為yax+ba≠0),

A47),E7,4)代入yax+b,得:,

解得:,

直線AE的解析式為y=﹣x+11

直線lAE,且直線l過點(diǎn)C3,0),

直線l的解析式為y=﹣x+3

設(shè)點(diǎn)P的坐標(biāo)為(m,﹣m+3),

點(diǎn)A的坐標(biāo)為(4,7),點(diǎn)C的坐標(biāo)為(3,0),

AP2=(m42+(﹣m+3722m2+32,AC2=(342+07250,CP2=(m32+(﹣m+322m212m+18

分三種情況考慮:

當(dāng)ACAP時(shí),502m2+32,

解得:m13(舍去),m2=﹣3,

點(diǎn)P的坐標(biāo)為(﹣36);

當(dāng)CACP時(shí),502m212m+18,

解得:m3=﹣2m48,

點(diǎn)P的坐標(biāo)為(﹣25)或(8,﹣5);

當(dāng)PAPC時(shí),2m2+322m212m+18,

解得:m=﹣

點(diǎn)P的坐標(biāo)為(﹣,).

綜上所述:在直線l上存在一點(diǎn)P使PAC是等腰三角形,點(diǎn)P的坐標(biāo)為(﹣3,6),(﹣25),(8,﹣5),(﹣,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜經(jīng)營(yíng)戶以2/千克的價(jià)格購(gòu)進(jìn)一批小型西瓜,以3/千克的價(jià)格出售,每天可售出200千克,為了促銷,該經(jīng)營(yíng)戶決定降價(jià)銷售,經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價(jià)0.1/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,設(shè)每千克降價(jià)x元每天銷量為y千克.

1)求yx的函數(shù)關(guān)系式;

2)如何定價(jià),才能使每天獲得的利潤(rùn)為200元,且使每天的銷量較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD是邊BC上的中線,過點(diǎn)AAE∥BC,過點(diǎn)DDE∥AB,DEAC、AE分別交于點(diǎn)O、點(diǎn)E,連接EC

1)求證:AD=EC;

2)當(dāng)∠BAC=Rt∠時(shí),求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團(tuán)課程,為了解部分社團(tuán)課程在學(xué)生中最受歡迎的程度,學(xué)校隨機(jī)抽取七年級(jí)部分學(xué)生進(jìn)行調(diào)查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選出你喜歡的課程(被調(diào)查者限選一項(xiàng)),并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)以上信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為多少人,扇形統(tǒng)計(jì)圖中A部分的圓心角是多少度.

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)根據(jù)本次調(diào)查,該校七年級(jí)840名學(xué)生中,估計(jì)最喜歡“科學(xué)探究”的學(xué)生人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙O分別與BCAC交于點(diǎn)D、E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F

1)求證:DFAC;

2)若⊙O的半徑為4CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是 6,﹣8,M、N、P為數(shù)軸上三個(gè)動(dòng)點(diǎn),點(diǎn)MA點(diǎn)出發(fā)速度為每秒2個(gè)單位,點(diǎn)N從點(diǎn)B出發(fā)速度為M點(diǎn)的3倍,點(diǎn)P從原點(diǎn)出發(fā)速度為每秒1個(gè)單位.

(1)若點(diǎn)M向右運(yùn)動(dòng),同時(shí)點(diǎn)N向左運(yùn)動(dòng),求多長(zhǎng)時(shí)間點(diǎn)M與點(diǎn)N相距54個(gè)單位?

(2)若點(diǎn)M、N、P同時(shí)都向右運(yùn)動(dòng),求多長(zhǎng)時(shí)間點(diǎn)P到點(diǎn)M,N的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段

1)如圖1,點(diǎn)沿線段自點(diǎn)向點(diǎn)的速度運(yùn)動(dòng),同時(shí)點(diǎn)沿線段點(diǎn)向點(diǎn)的速度運(yùn)動(dòng),幾秒鐘后,兩點(diǎn)相遇?

2)如圖1,幾秒后,點(diǎn)兩點(diǎn)相距?

3)如圖2,,當(dāng)點(diǎn)的上方,且時(shí),點(diǎn)繞著點(diǎn)30/秒的速度在圓周上逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)沿直線點(diǎn)向點(diǎn)運(yùn)動(dòng),假若點(diǎn)兩點(diǎn)能相遇,求點(diǎn)的運(yùn)動(dòng)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,b)是拋物線上一動(dòng)點(diǎn),OBOA交拋物線于點(diǎn)B(c,d).當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)的過程中(點(diǎn)A不與坐標(biāo)原點(diǎn)O重合),以下結(jié)論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過一定點(diǎn).正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案