【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣1,0),點B的坐標為(2,0),點P為線段AB外一動點且PA=1,以PB為邊作等邊△PBM,則當線段AM的長取到最大值時,點P的橫坐標為_____.
【答案】﹣
【解析】
如圖,將△MPA繞點P順時針旋轉(zhuǎn)60°,得到△BPN,連接AN.根據(jù)旋轉(zhuǎn)不變性可知:PA=PN,∠MPB=∠APN=60°,AM=BN,推出△PAN是等邊三角形,推出AN=PA=1,由BN≤AN+AB,推出當N,A,B共線時,BN的值最大,此時點N在BA的延長線上,由此即可解決問題.
如圖,將△MPA繞點P順時針旋轉(zhuǎn)60°,得到△BPN,連接AN.
根據(jù)旋轉(zhuǎn)不變性可知:PA=PN,∠MPB=∠APN=60°,AM=BN,
∴△PAN是等邊三角形,
∴AN=PA=1,
∵BN≤AN+AB,
∴當N,A,B共線時,BN的值最大,此時點N在BA的延長線上,可得點P的橫坐標為﹣1﹣,
故答案為:﹣.
科目:初中數(shù)學 來源: 題型:
【題目】中考英語聽力測試期間T需要杜絕考點周圍的噪音.如圖,點A是某市一中考考點,在位于考點南偏西15°方向距離500米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報聲傳播半徑為400米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?
說明理由.(≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于給定的一次函數(shù)y=ax+b(a≠0),把形如的函數(shù)稱為一次函數(shù)y=ax+b(a≠0)的衍生函數(shù).已知矩形ABCD的頂點坐標分別為A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函數(shù)y=2x+l.
①若點P(-1,m)在這個一次函數(shù)的衍生函數(shù)圖像上,則m= .
②這個一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點坐標分別為 .
(2)當函數(shù)y=kx-3(k>0)的衍生函數(shù)的圖象與矩形ABCD有2個交點時,k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC.其中一定能夠判定△ABC是直角三角形的有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,連接,為射線上的一個動點(與點不重合),連接,的垂直平分線交線段于點,連接,.
提出問題:當點運動時,的度數(shù)是否發(fā)生改變?
探究問題:
(1)首先考察點的兩個特殊位置:
①當點與點重合時,如圖1所示,____________
②當時,如圖2所示,①中的結(jié)論是否發(fā)生變化?直接寫出你的結(jié)論:__________;(填“變化”或“不變化”)
(2)然后考察點的一般位置:依題意補全圖3,圖4,通過觀察、測量,發(fā)現(xiàn):(1)中①的結(jié)論在一般情況下_________;(填“成立”或“不成立”)
(3)證明猜想:若(1)中①的結(jié)論在一般情況下成立,請從圖3和圖4中任選一個進行證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設DE與BC相交于點F,求BF的長;
(2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com