【題目】已知,如圖,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s,點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s,連接PQ,若設(shè)運動的時間為t(s)(0<t<2),解答下列問題:
(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,請說明理由.
【答案】(1)y=﹣t2+3t.(2)不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.
【解析】
試題分析:(1)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關(guān)鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB﹣BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.
(2)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(1)的面積與t的關(guān)系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
解:(1)過點P作PH⊥AC于H.
∵△APH∽△ABC,
∴=,
∴=,
∴PH=3﹣t,
∴y=×AQ×PH=×2t×(3﹣t)=﹣t2+3t.
(2)不存在.
理由:∵若PQ把△ABC周長平分,
∴AP+AQ=BP+BC+CQ.
∴(5﹣t)+2t=t+3+(4﹣2t),解得t=1.
若PQ把△ABC面積平分,則S△APQ=S△ABC,﹣t2+3t=3.
∵t=1代入上面方程不成立,
∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;貨車的速度是 千米/時.
(2)求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)表達式;
(3)客、貨兩車何時相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)庫存若干套桌椅,準備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學(xué)校每天付甲組80元修理費,付乙組120元修理費。
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進行質(zhì)量監(jiān)督,學(xué)校負擔(dān)他每天10元生活補助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認為哪種方案省時又省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD一條對角線長為6,邊AB長為方程y2﹣7y+10=0的一個根,則菱形ABCD周長為( )
A. 8 B. 20 C. 8或20 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的一點,DE⊥AB,DF⊥AC,垂足分別為E、F,添加一個條件,使DE=DF,并說明理由.
解:需添加條件是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率.設(shè)每次降價的百分率為x,下面所列的方程中正確的是( )
A.560(1+x)2=315 B.560(1﹣x)2=315
C.560(1﹣2x)2=315 D.560(1﹣x2)=315
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由一些火柴棒搭成的圖案:
(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.
(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?
(3)計算一下擺121根火柴棒時,是第幾個圖案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com