【題目】已知:正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長(zhǎng)交于,延長(zhǎng)交于,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出如圖中的四個(gè)角,使寫(xiě)出的每一個(gè)角的大小都等于旋轉(zhuǎn)角.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEACΔDAF,根據(jù)全等三角形的性質(zhì)即可得CE=DF;(2)由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
(1)證明:連接,
∵正方形旋轉(zhuǎn)至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC繞點(diǎn) A順時(shí)針旋轉(zhuǎn)90°得到,點(diǎn)D 與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)E與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CE,則∠CED的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)C,過(guò)點(diǎn)F作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中點(diǎn)M,連接MF,請(qǐng)補(bǔ)全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A,B均在格點(diǎn)上.則線段AB的長(zhǎng)為 .請(qǐng)借助網(wǎng)格,僅用無(wú)刻度的直尺在AB上作出點(diǎn)P,使AP=.
(2)⊙O為△ABC的外接圓,請(qǐng)僅用無(wú)刻度的直尺,依下列條件分別在圖2,圖3的圓中畫(huà)出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫(xiě)作法,請(qǐng)下結(jié)論注明你所畫(huà)的弦).
①如圖2,AC=BC;
②如圖3,P為圓上一點(diǎn),直線l⊥OP且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB切⊙O與點(diǎn)A,BE切⊙O于點(diǎn)E,連接AO并延長(zhǎng)交⊙O于點(diǎn)C,交BE的延長(zhǎng)線于點(diǎn)D,連接EC,若AD=8,tan∠DEC=,則CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿邊向OA終點(diǎn)A運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊BC向終點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,PQ=y.
(1)直接寫(xiě)出y關(guān)于t的函數(shù)解析式及t的取值范圍: ;
(2)當(dāng)PQ=3時(shí),求t的值;
(3)連接OB交PQ于點(diǎn)D,若雙曲線經(jīng)過(guò)點(diǎn)D,問(wèn)k的值是否變化?若不變化,請(qǐng)求出k的值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,C、E是⊙O上的兩點(diǎn),CE=CB,∠BCD=∠CAE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:(1)CD是⊙O的切線;
(2)CE=CF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)直線y=﹣x﹣2與該拋物線在第四象限內(nèi)交于點(diǎn)D,與x軸交于點(diǎn)F,連接AC,CD,線段AC與線段DF交于點(diǎn)G,求證:△AGF≌△CGD;
(3)直線y=m(m>0)與該拋物線的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè)),點(diǎn)M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)M′,點(diǎn)H的坐標(biāo)為(1,0),若四邊形NHOM′的面積為,求點(diǎn)H到OM′的距離d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市對(duì)今年“元旦”期間銷(xiāo)售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問(wèn)題:
(1)該超市“元旦”期間共銷(xiāo)售 個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的扇形圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果該超市的另一分店在“元旦”期間共銷(xiāo)售這三種品牌的綠色雞蛋1500個(gè),請(qǐng)你估計(jì)這個(gè)分店銷(xiāo)售的B種品牌的綠色雞蛋的個(gè)數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com