【題目】如圖,在Rt△ABC中,∠A=90°, ∠B=30°,BC=+1,點E、F分別是BC、AC邊上的動點,沿EF所在直線折疊∠C,使點C的對應點C始終落在邊AB上,若△BEC是直角三角形時,則BC的長為_____________

【答案】或2

【解析】分析分兩種情況①當∠BEC′=90°時,EC′=xBE=x,BC′=2xEC=x,BC=BE+EC,可求出x的值,即可得到結論;

當∠BCE=90°時,EC′=x,BE=2x,BC′=xEC=x,BC=BE+EC可求出x的值,即可得到結論

詳解分兩種情況①當∠BEC′=90°時EC′=x,BE=x,BC′=2x,EC=x,∴BC=BE+EC=x+x=+1解得x=1,∴BC′=2x=2

當∠BCE=90°時EC′=x,BE=2xBC′=x,EC=x,∴BC=BE+EC=2x+x=+1,解得x=,∴BC′=x=

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖(a)是一塊邊長為1,周長記為的正三角形紙板,沿圖(a)的底邊剪去一塊邊長為的正三角形紙板后得到圖(b),然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪掉正三角形紙板邊長的后,得圖(c),(d),……,記第)塊紙板的周長為Pn.則____;_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下面的表格中,從左到右依次在每個小方格中填入一個數(shù),使得其中任意三個相鄰方格中所填數(shù)之和都相等,例如:

第1格

第2格

第3格

第4格

第5格

第6格

第7格

第8格

第9格

第n格

8

-2

_____

_____

_____

-3

_____

1)求出第4格中的數(shù)

2)第6格中的數(shù)是    (直接填具體數(shù));

3)前2020個格子中所填各數(shù)之和為    (直接填空).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45°.

(1)OC的長為   ;

(2)DOA上一點,以BD為直徑作⊙M,MAB于點Q.當⊙My軸相切時,sinBOQ=   ;

(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PEOC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7張如圖1的長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )

A.a=bB.a=3bC.a=bD.a=4b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】望江中學為了了解學生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學生進行調(diào)查統(tǒng)計,并將調(diào)查統(tǒng)計的結果分為:每天誦讀時間t≤20分鐘的學生記為A類,20分鐘<t≤40分鐘的學生記為B類,40分鐘<t≤60分鐘的學生記為C類,t>60分鐘的學生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)m=%,n=%,這次共抽查了名學生進行調(diào)查統(tǒng)計;

(2)請補全上面的條形統(tǒng)計圖;

(3)如果該校共有1200名學生,請你估計該校C類學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某學校教學樓AB的后面有一建筑物CD,在距離CD正后方28米的觀測點P處,以22°的仰角測得建筑物的頂端C恰好擋住教學樓的頂端A,而在建筑物CD上距離地面2米高的E處,測得教學樓的頂端A的仰角為45°,求教學樓AB的高度(結果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ABC=90°,以AB為直徑作⊙OAC邊于點D,E是邊BC的中點,連接DE,OD.

(Ⅰ)如圖①,求∠ODE的大小;

(Ⅱ)如圖②,連接OCDE于點F,若OF=CF,求∠A的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE

2)求證:CA平分∠BCD;

3)如圖(2),設AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

同步練習冊答案