【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)F為OB中點(diǎn).
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)E為x軸上一動(dòng)點(diǎn),當(dāng)△BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FE﹣DE|的最大值;
(3)如圖2,若點(diǎn)G與點(diǎn)B關(guān)于拋物線對(duì)稱軸對(duì)稱,直線BG與y軸交于點(diǎn)M,點(diǎn)N是線段BG上的一動(dòng)點(diǎn),連接NF,MF,當(dāng)∠NFO=3∠BNF時(shí),連接CN,將直線BO繞點(diǎn)O旋轉(zhuǎn),記旋轉(zhuǎn)中的直線BO為B′O,直線B′O與直線CN交于點(diǎn)Q,當(dāng)△OCQ為等腰三角形時(shí),求點(diǎn)Q的坐標(biāo).
【答案】(1)y=﹣x+;(2)D(,﹣);|FE﹣DE|的最大值為;(3)點(diǎn)Q的坐標(biāo)為Q1(,),Q2(,),Q3(﹣,),Q4(+,﹣).
【解析】
(1)令拋物線y=0,求出點(diǎn)C的坐標(biāo),再令x=1,求出點(diǎn)B坐標(biāo),待定系數(shù)法求出直線BC的解析式;
(2)三角形面積最值轉(zhuǎn)換成求DH的最大值,然后利用二次函數(shù)的求最值問(wèn)題解決點(diǎn)D的坐標(biāo),|FEDE|的最大值,可將點(diǎn)D和點(diǎn)F轉(zhuǎn)換到x軸的同一側(cè),再利用共線時(shí)差值最大求出線段長(zhǎng)度即可.
(3)找等腰三角形問(wèn)題,要分類討論,以OC為腰,或以OC為底都可以,利用∠OCN的正切值求出邊之間的比例關(guān)系,求出點(diǎn)Q的坐標(biāo).
(1)令y=0,解得x1=,x2=,
∴A(,0),B(,0)
當(dāng)x=1時(shí),y=2
∴B(1,2)
設(shè)直線BC的解析式為y=kxb代入點(diǎn)B和C
,
解得
∴直線BC的解析式為y=;
(2)設(shè)點(diǎn)D(m,)
過(guò)點(diǎn)D作x軸的平行線,交BC于點(diǎn)H,
則點(diǎn)H(m,﹣m+)
HD=﹣m+﹣()=﹣(m﹣)2+
∴當(dāng)m=時(shí),HD取最大值,此時(shí)S△BCD的面積取最大值.
D(,)
作D關(guān)于x軸的對(duì)稱點(diǎn)D′
則D′(,)
連接D′H交x軸于一點(diǎn)E,此時(shí)D′E﹣FE最大,即為D′F的長(zhǎng)度
∵F為OB的中點(diǎn)
∴F(,)
∴D′F=
∴|FE﹣DE|的最大值為.
(3)由題意可知M(0,2)
∵∠NFO=3∠BNF
∴∠FBN=2∠BNF
作∠FBN的角平分線交x軸于點(diǎn)E
則∠OBE=∠EBG=∠OEB=∠BNF
過(guò)點(diǎn)B作x軸的垂線,垂足為點(diǎn)J
則J(1,0)
∵OB==3
∴OE=3
∴EJ=2
∵BJ=2
∴tan∠BEJ=,
∴tan∠BNF=,
過(guò)點(diǎn)F作MN的垂線,垂足為D
則FD=,
∴ND=1
∴N(,2)
連接NC
∵tan∠NCO=
①當(dāng)OQ1等于CQ1時(shí),過(guò)點(diǎn)Q1作OC的垂線,垂足為I
∵OC=
∴CI=
∴Q1I=
∴Q1(,)
②當(dāng)OC=CQ3時(shí),過(guò)點(diǎn)Q3作OC的垂線,垂足為K
∵OC=,∴CQ3=,
CK=,Q3K=
∴Q3(,)
③當(dāng)OQ2=OC時(shí),過(guò)點(diǎn)Q2作OC的垂線,垂足為P
∵OC=3,∴OQ2=3
設(shè)PC=a,則Q2P=a,OP=﹣a
根據(jù)勾股定理解得a=
∴Q2(,)
④當(dāng)Q4在NC的延長(zhǎng)線上時(shí),CQ4=OC
同理可得,Q4(,)
綜上所述:點(diǎn)Q的坐標(biāo)為Q1(,),Q2(,),Q3(,),Q4(,,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于點(diǎn)和點(diǎn),交軸于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);
(3)如圖,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn),作軸,交拋物線于點(diǎn),求線段長(zhǎng)度的最大值,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),下列說(shuō)法正確的是( )
A. 方程=-3必有實(shí)數(shù)根
B. 若移動(dòng)函數(shù)圖象使其經(jīng)過(guò)原點(diǎn),則只能將圖像向右移動(dòng)1個(gè)單位
C. 若k>0,則當(dāng)x>0時(shí),必有y隨著x的增大而增大
D. 若k<0,則當(dāng)x<-1時(shí),必有y隨著x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O在BC邊上,以OC為半徑作⊙O,與AB切于點(diǎn)D,與邊BC,AC分別交于點(diǎn)E,F,且弧DE=弧DF.
(1)求證:△ABC是直角三角形.
(2)連結(jié)CD交OF于點(diǎn)P,當(dāng)cos∠B=時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年平昌冬奧會(huì)在2月9日到25日在韓國(guó)平昌郡舉行。為了調(diào)查中學(xué)生對(duì)冬奧會(huì)比賽項(xiàng)目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級(jí):A、非常了解 B、比較了解 C、基本了解 D、不了解。根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計(jì)圖表。
(1)本次調(diào)查的樣本容量是 ,n= ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)學(xué)校準(zhǔn)備開(kāi)展冬奧會(huì)的知識(shí)競(jìng)賽,該校共有4000名學(xué)生,請(qǐng)你估計(jì)這所學(xué)校本次競(jìng)賽“非常了解”和“比較了解”的學(xué)生總數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛(ài)看課外書(shū)、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方式收集數(shù)據(jù)(參與問(wèn)卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問(wèn)題:
(1)請(qǐng)直接補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生3200名,試估計(jì)該校喜愛(ài)看課外書(shū)的學(xué)生人數(shù)。
(3)若被調(diào)查喜愛(ài)體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好抽2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形的對(duì)角線相交于點(diǎn),,則下列條件中不能判定四邊形為平行四邊形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料
計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,則:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的問(wèn)題中,用一個(gè)字母代表式子中的某一部分,能達(dá)到簡(jiǎn)化計(jì)算的目的,這種思想方法叫做“換元法”,請(qǐng)用“換元法”解決下列問(wèn)題:
(1)計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)四邊形存在一條對(duì)角線,使得這條對(duì)角線是四邊形某兩邊的比例中項(xiàng),則稱這個(gè)四邊形為“閃亮四邊形”,這條對(duì)角線稱為“亮線”.如圖1,四邊形ABCD中,AB=AC=AD,滿足AC2=ABAD,四邊形ABCD是閃亮四邊形,AC是亮線.
(1)以下說(shuō)法正確的是______(填寫(xiě)序號(hào))
①正方形不可能是閃亮四邊形;
②矩形中存在閃亮四邊形;
③若一個(gè)菱形是閃亮四邊形,則必有一個(gè)內(nèi)角是60°.
(2)如圖2,四邊形ABCD中,AD∥BC,∠ABC=90°,AD=9,AB=12,CD=20,判斷哪一條線段是四邊形ABCD的亮線?請(qǐng)你作出判斷并說(shuō)明理由.
(3)如圖3,AC是閃亮四邊形ABCD的唯一亮線,∠ABC=90°,∠D=60°,AB=4,BC=2,請(qǐng)直接寫(xiě)出線段AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com