【題目】某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,各項成績滿分均為100分,然后再按筆試占60%、面試占40%計算候選人的綜合成績(滿分為100分).

他們的各項成績?nèi)缦卤硭荆?/span>

修造人

筆試成績/分

面試成績/分

90

88

84

92

x

90

88

86

(1)直接寫出這四名候選人面試成績的中位數(shù);

(2)現(xiàn)得知候選人丙的綜合成績?yōu)?7.6分,求表中x的值;

(3)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選.

【答案】(1)這四名候選人面試成績的中位數(shù)為89(分);(2)表中x的值為86;(3)以綜合成績排序確定所要招聘的前兩名的人選是甲和丙.

【解析】

(1)根據(jù)中位數(shù)的概念計算;

(2)根據(jù)題意列出方程,解方程即可;

(3)根據(jù)加權(quán)平均數(shù)的計算公式分別求出余三名候選人的綜合成績,比較即可.

(1)這四名候選人面試成績的中位數(shù)為:=89(分);

(2)由題意得,x×60%+90×40%=87.6

解得,x=86,

答:表中x的值為86;

(3)甲候選人的綜合成績?yōu)椋?/span>90×60%+88×40%=89.2(分),

乙候選人的綜合成績?yōu)椋?/span>84×60%+92×40%=87.2(分),

丁候選人的綜合成績?yōu)椋?/span>88×60%+86×40%=87.2(分),

∴以綜合成績排序確定所要招聘的前兩名的人選是甲和丙.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.

1)把△ABC平移至的位置,使點A對應(yīng),得到△;

2)圖中可用字母表示,與線段平行且相等的線有:________

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6B是數(shù)軸上在A左側(cè)的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt0)秒.

1)數(shù)軸上點B表示的數(shù)是   ,點P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:

①當(dāng)點P運動多少秒時,點P與點Q相遇?

②當(dāng)點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初中學(xué)校欲向高一級學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:

其次,對三名候選人進(jìn)行了筆試和面試兩項測試.各項成績?nèi)缦卤硭?/span>:

測試項目

測試成績/

筆試

92

90

95

面試

85

95

80

圖二是某同學(xué)根據(jù)上表繪制的一個不完整的條形圖.

請你根據(jù)以上信息解答下列問題:

(1)補(bǔ)全圖一和圖二.

(2)請計算每名候選人的得票數(shù).

(3)若每名候選人得一票記1,投票、筆試、面試三項得分按照253的比確定,計算三名候選人的平均成績,成績高的將被錄取,應(yīng)該錄取誰?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中點,⊙O與AC、BC分別相切于點D、E,點F是⊙O與AB的一個交點,連接DF并延長交CB的延長線于點G,則BG的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、F、C、D在同一直線上,AB∥DE,AC=DF,AB=DE.
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=8,BC=6,當(dāng)AF為何值時,四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】眉山市三蘇雕像廣場是為了紀(jì)念三蘇父子而修建的.原是一塊長為(4a+2b)米,寬為(3a-b)米的長方形地塊,現(xiàn)在政府對廣場進(jìn)行改造,計劃將如圖四周陰影部分進(jìn)行綠化,中間將保留邊長為(a+b)米的正方形三蘇父子雕像,則綠化的面積是多少平方米?并求出當(dāng)a=20,b=10時的綠化面積.

查看答案和解析>>

同步練習(xí)冊答案