【題目】如圖,AB為⊙O的直徑,點C為AB上方的圓上一動點,過點C作⊙O的切線l,過點A作直線l的垂線AD,交⊙O于點D,連接OC,CD,BC,BD,且BD與OC交于點 E.
(1)求證:△CDE≌△CBE;
(2)若AB=6,填空:
①當的長度是 時,△OBE是等腰三角形;
②當BC= 時,四邊形OADC為菱形.
【答案】(1)見解析;(2)①π;②3
【解析】
(1)由已知可得CE⊥BD,則可知DE=BE,所以△CDE≌△CBE(SAS);
(2)①連接OD,由已知可證明△ABD是等腰直角三角形,求得∠COD=45°,即可求的長度;②由已知可得OA=OC=AD=CD=3,再由△CDE≌△CBE,則CD=BC.
解:(1)∵過點C作⊙O的切線l,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∵AB為⊙O的直徑,點C為AB上方的圓上一動點,
∴AD⊥BD,
∴BD⊥OC,
∴DE=BE,
∴△CDE≌△CBE(SAS);
(2)①連接OD,
當△OBE是等腰三角形時,
∵BE⊥OE,
∴OE=BE,
∴∠OBE=∠EOB=45°,
∵AD∥OC,
∴∠A=45°,
∴△ABD是等腰直角三角形,
∴∠COD=45°,
∵AB=6,
∴AO=3,
∴的長度==π,
故答案為π;
②∵四邊形OADC為菱形,
∴OA=OC=AD=CD=3,
∵△CDE≌△CBE,
∴CD=BC,
∴BC=3,
故答案為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為2,過點B的直線l⊥AB,且△ABC與△A′BC′關(guān)于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( )
A. 4 B. 3 C. 2 D. 2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題時,我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.
(問題提出)
求證:如果一個定圓的內(nèi)接四邊形對角線互相垂直,那么這個四邊形的對邊的平方和是一個定值.
(從特殊入手)
我們不妨設(shè)定圓O的半徑是R,⊙O的內(nèi)接四邊形ABCD中,AC⊥BD.
請你在圖①中補全特殊殊位置時的圖形,并借助于所畫圖形探究問題的結(jié)論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,點A在⊙O上,∠AMN=30°,B為的中點,P是直徑MN上一動點,則PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠B=30°,AC=.按以下步驟作圖:
①以A為圓心,以小于AC長為半徑畫弧,分別交AC、AB于點E、D;
②分別以D、E為圓心,以大于DE長為半徑畫弧,兩弧相交于點P;
③連接AP交BC于點F.
那么BF的長為( 。
A.B.3C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx﹣3與直線y=x+3交于點A(m,0)和點B(2,n),與y軸交于點C.
(1)求m,n的值及拋物線的解析式;
(2)在圖1中,把△AOC平移,始終保持點A的對應(yīng)點P在拋物線上,點C,O的對應(yīng)點分別為M,N,連接OP,若點M恰好在直線y=x+3上,求線段OP的長度;
(3)如圖2,在拋物線上是否存在點Q(不與點C重合),使△QAB和△ABC的面積相等?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當∠DOE=90°時,AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACE,△ACD均為直角三角形,∠ACE=90°,∠ADC=90°,AE與CD相交于點P,以CD為直徑的⊙O恰好經(jīng)過點E,并與AC,AE分別交于點B和點F.
(1)求證:∠ADF=∠EAC.
(2)若PC=PA,PF=1,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com