【題目】以△ABC的三邊在BC同側(cè)分別作三個(gè)等邊三角形△ABD,△BCE ,△ACF,試回答下列問(wèn)題:

1)四邊形ADEF是什么四邊形?請(qǐng)證明:

2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是矩形?

3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?

4)當(dāng)△ABC滿足什么條件時(shí),能否構(gòu)成正方形?

5)當(dāng)△ABC滿足什么條件時(shí),無(wú)法構(gòu)成四邊形?

【答案】1)見(jiàn)解析;(2)當(dāng)△ABC中的∠BAC=150°時(shí),四邊形ADEF是矩形;(3)當(dāng)△ABC中的AB=AC時(shí),四邊形ADEF是菱形;(4)當(dāng)∠BAC=150°AB=AC時(shí),四邊形ADEF是正方形;(5)當(dāng)∠BAC=60°時(shí),D、AF為同一直線,與E點(diǎn)構(gòu)不成四邊形,即以A、DE、F為頂點(diǎn)的四邊形不存在.

【解析】

1)通過(guò)證明△DBE≌△ABC,得到DE=AC,利用等邊三角形ACF,可得DE=AF

同理證明全等,利用等邊三角形,得AD=EF,可得答案.(2)利用平行四邊形ADEF是矩形,結(jié)合已知條件等邊三角形得到即可.(3)利用平行四邊形ADEF是菱形形,結(jié)合已知條件等邊三角形得到即可.(4)結(jié)合(2)(3)問(wèn)可得答案.(5)當(dāng)四邊形ADEF不存在時(shí),即出現(xiàn)三個(gè)頂點(diǎn)在一條直線上,因此可得答案。

解:(1 ∵△BCE、△ABD是等邊三角形,

∴∠DBA=EBC=60°,AB=BDBE=BC,

∴∠DBE=ABC,

∴△DBE≌△ABC,

DE=AC,

又△ACF是等邊三角形, AC=AF,

DE=AF,

同理可證:AD=EF,

∴四邊形ADEF是平行四邊形.

2 假設(shè)四邊形ADEF是矩形, 則∠DAF=90°,

又∠DAB=FAC=60°, DAB+FAC+DAF+BAC=360°

∴∠BAC=150°

因此當(dāng)△ABC中的∠BAC=150°時(shí),四邊形ADEF是矩形.

3)假設(shè)四邊形ADEF是菱形, AD=DE=EF=AF

AB=ADAC=AF,∴AB=AC

因此當(dāng)△ABC中的AB=AC時(shí),四邊形ADEF是菱形.

4)結(jié)合(2)(3)問(wèn)可知當(dāng)∠BAC=150°AB=AC時(shí),

四邊形ADEF是正方形.

5)由圖知道:∠DAB+FAC+DAF+BAC=360°

∴當(dāng)∠BAC=60°時(shí),DA、F為同一直線,與E點(diǎn)構(gòu)不成四邊形,

即以A、DE、F為頂點(diǎn)的四邊形不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列條件中不能確定四邊形ABCD是平行四邊形的是

A.,B.

C.,D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) , ,連結(jié)

(1)如圖1,當(dāng)點(diǎn)重合時(shí),求證:四邊形是平行四邊形

(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

(3)如圖3,延長(zhǎng)于點(diǎn),若,且

①求的度數(shù);

②當(dāng)時(shí),求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,平面直角坐標(biāo)系中的點(diǎn)A(a,1),t=ab﹣a2﹣b2(a,b是實(shí)數(shù)

(1)若關(guān)于x的反比例函數(shù)y=過(guò)點(diǎn)A,求t的取值范圍.

(2)若關(guān)于x的一次函數(shù)y=bx過(guò)點(diǎn)A,求t的取值范圍.

(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過(guò)點(diǎn)A,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知OA=6厘米,OB=8厘米.點(diǎn)P從點(diǎn)B開(kāi)始沿BA邊向終點(diǎn)A1厘米/秒的速度移動(dòng);點(diǎn)Q從點(diǎn)A開(kāi)始沿AO邊向終點(diǎn)O1厘米/秒的速度移動(dòng).P、Q同時(shí)出發(fā)運(yùn)動(dòng)時(shí)間為t(s).

(1)t為何值時(shí),APQAOB相似?

(2)當(dāng) t為何值時(shí),APQ的面積為8cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測(cè)量得到∠CAH=37°,DBH=60°,AB=10m,求GH的長(zhǎng).(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我縣古田鎮(zhèn)某紀(jì)念品商店在銷售中發(fā)現(xiàn):成功從這里開(kāi)始的紀(jì)念品平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存,該商店在今年國(guó)慶黃金周期間,采取了適當(dāng)?shù)慕祪r(jià)措施,改變營(yíng)銷策略后發(fā)現(xiàn):如果每件降價(jià)4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀(jì)念品上盈利1200元,那么每件紀(jì)念品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,AD,BD⊙O的弦,BC⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.

(1)求證:DC⊙O的切線;

(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小董設(shè)計(jì)的作已知圓的內(nèi)接正三角形的尺規(guī)作圖過(guò)程.

已知:⊙O.

求作:⊙O的內(nèi)接正三角形.

作法:如圖,

①作直徑AB;

②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點(diǎn);

③連接AC,AD,CD.

所以△ACD就是所求的三角形.

根據(jù)小董設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:在⊙O中,連接OC,OD,BC,BD,

OC=OB=BC,

∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).

∴∠BOC=60°.

∴∠AOC=180°-BOC=120°.

同理∠AOD=120°,

∴∠COD=AOC=AOD=120°.

AC=CD=AD(_______________)(填推理的依據(jù)).

∴△ACD是等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案