【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點A(-3,m),求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點B,C(點B在點C的左側(cè)),將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移n(n>0)個單位后得到的圖象記為G,同時將(2)中得到的直線y=kx+6向上平移n個單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點時,求n的取值范圍.
【答案】(1)(2)① m=-6,k=4;②
【解析】
(1)把x=0和x=2代入得出關(guān)于t的方程,求出t即可;
(2)把A的坐標(biāo)代入拋物線,即可求出m,把A的坐標(biāo)代入直線,即可求出k;
(3)求出點B、C間的部分圖象的解析式是y=-(x-3)(x+1),得出拋物線平移后得出的圖象G的解析式是y=-(x-3+n)(x+1+n),-n-1≤x≤3-n,直線平移后的解析式是y=4x+6+n,若兩圖象有一個交點時,得出方程4x+6+n=-(x-3+n)(x+1+n)有兩個相等的實數(shù)解,求出判別式△=6n=0,求出的n的值與已知n>0相矛盾,得出平移后的直線與拋物線有兩個公共點,設(shè)兩個臨界的交點為(-n-1,0),(3-n,0),代入直線的解析式,求出n的值,即可得出答案.
(1)解:∵二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時的函數(shù)值相等,
∴代入得:0+0+=4(t+1)+4(t+2)+,
解得:t=-,
∴y=(-+1)x2+2(-+2)x+=-x2+x+,
∴二次函數(shù)的解析式是y=-x2+x+.
(2)解:把A(-3,m)代入y=-x2+x+得:m=-×(-3)2-3+=-6,
即A(-3,-6),
代入y=kx+6得:-6=-3k+6,
解得:k=4,
即m=-6,k=4.
(3)解:由題意可知,點B、C間的部分圖象的解析式是y=-x2+x+=-(x2-2x-3)=-(x-3)(x+1),-1≤x≤3,
則拋物線平移后得出的圖象G的解析式是y=-(x-3+n)(x+1+n),-n-1≤x≤3-n,
此時直線平移后的解析式是y=4x+6+n,
如果平移后的直線與平移后的二次函數(shù)相切,
則方程4x+6+n=-(x-3+n)(x+1+n)有兩個相等的實數(shù)解,
即-x2-(n+3)x-n2-=0有兩個相等的實數(shù)解,
判別式△=[-(n+3)]2-4×(-)×(-n2-)=6n=0,
即n=0,
∵與已知n>0相矛盾,
∴平移后的直線與平移后的拋物線不相切,
∴結(jié)合圖象可知,如果平移后的直線與拋物線有公共點,
則兩個臨界的交點為(-n-1,0),(3-n,0),
則0=4(-n-1)+6+n,
n=,
0=4(3-n)+6+n,
n=6,
即n的取值范圍是:≤n≤6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)交軸于、兩點,(點在點的左側(cè))與軸交于點,連接.
(1)求點、點和點的坐標(biāo);
(2)如圖2,若點為第四象限內(nèi)拋物線上一動點,點的橫坐標(biāo)為,的面積為.求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;
(3)拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,請直接寫出所有點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要了解學(xué)生上學(xué)交通情況,選取七年級全體學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,畫出扇形統(tǒng)計圖(如圖),圖中“公交車”對應(yīng)的扇形圓心角為60°,“自行車”對應(yīng)的扇形圓心角為120°,已知七年級乘公交車上學(xué)的人數(shù)為50人.
(1)七年級學(xué)生中,騎自行車和乘公交車上學(xué)的學(xué)生人數(shù)哪個更多?多多少人?
(2)如果全校有學(xué)生2400人,學(xué)校準(zhǔn)備的600個自行車停車位是否足夠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=4,BC=2,點O在AB的延長線上,OB=,∠AOE=60°,動點P從點O出發(fā),以每秒2個單位長度的速度沿射線OE方向運(yùn)動,以P為圓心,OP為半徑作⊙P,同時點Q從B點出發(fā),以每秒1個單位長度的速度沿折線B-C-D向點D運(yùn)動,Q與D重合時,P,Q同時停止運(yùn)動,設(shè)P的運(yùn)動時間t秒.
(1)∠BOC= ,PA的最小值是 ;
(2)當(dāng)⊙P過點C時,求⊙P的劣弧與線段OA圍成的封閉圖形的面積;
(3)當(dāng)⊙P與矩形ABCD的邊所在直線相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°.
求作:射線CG,使得CG∥AB.
下面是小東設(shè)計的尺規(guī)作圖過程.
作法:
①以點A為圓心,適當(dāng)長為半徑作弧,分別交AC,AB于D,E兩點;
②以點C為圓心,AD長為半徑作弧,交AC的延長線于點F;
③以點F為圓心,DE長為半徑作弧,兩弧在∠FCB內(nèi)部交于點G;
④作射線CG.所以射線CG就是所求作的射線.
根據(jù)小東設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接FG、DE.
∵△ADE ≌ △_________,
∴∠DAE = ∠_________.
∴CG∥AB(___________________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富同學(xué)們的課余生活,我校將在周末舉行“親近大自然”的社會實踐活動,現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點是千鶴湖公園”的問卷調(diào)查,要求學(xué)生只能從“A(華中工委紀(jì)念館),B(洋馬菊花園),C(千鶴湖公園),D(丹頂鶴自然保護(hù)區(qū))”四個景點中選擇一項,根據(jù)調(diào)查結(jié)果,繪制了如圖的兩幅不完整的統(tǒng)計圖:
請解答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,求B所占的圓心角度數(shù);
(4)若該校有3600名學(xué)生,試估計該校最想去千鶴湖公園的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.
(1)求拋物線的解析式,并直接寫出點D的坐標(biāo);
(2)當(dāng)△AMN的周長最小時,求t的值;
(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當(dāng)△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如圖2,在(2)的條件下,設(shè)動點P對應(yīng)的位置是P1,將線段OP1繞點O逆時針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為α(0°<α<90°),連接AP2、BP2,求AP2+ BP2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com