【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
【答案】D
【解析】
試題分析:根據(jù)對稱軸為直線x=1及圖象開口向下可判斷出a、b、c的符號,從而判斷①;根據(jù)對稱軸得到函數(shù)圖象經(jīng)過(3,0),則得②的判斷;根據(jù)圖象經(jīng)過(﹣1,0)可得到a、b、c之間的關(guān)系,從而對②⑤作判斷;從圖象與y軸的交點B在(0,﹣2)和(0,﹣1)之間可以判斷c的大小得出④的正誤.
①∵函數(shù)開口方向向上, ∴a>0; ∵對稱軸在y軸右側(cè) ∴ab異號,
∵拋物線與y軸交點在y軸負(fù)半軸, ∴c<0, ∴abc>0, 故①正確;
②∵圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1, ∴圖象與x軸的另一個交點為(3,0),
∴當(dāng)x=2時,y<0, ∴4a+2b+c<0, 故②錯誤; ③∵圖象與x軸交于點A(﹣1,0),
∴當(dāng)x=﹣1時,y=(﹣1)2a+b×(﹣1)+c=0, ∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對稱軸為直線x=1 ∴-=1,即b=﹣2a, ∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0 ∵8a>0 ∴4ac﹣b2<8a 故③正確
④∵圖象與y軸的交點B在(0,﹣2)和(0,﹣1)之間, ∴﹣2<c<﹣1 ∴﹣2<﹣3a<﹣1,
∴>a>; 故④正確 ⑤∵a>0, ∴b﹣c>0,即b>c; 故⑤正確;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列圖形:①線段,②三角形,③平行四邊形,④正方形,⑤等腰三角形,⑥菱形,其中不是中心對稱圖形的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x一元二次方程x2+mx+n=0.
(1)當(dāng)m=n+2時,利用根的判別式判斷方程根的情況.
(2)若方程有實數(shù)根,寫出一組滿足條件的m,n的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交警通常根據(jù)剎車后輪滑行的距離來測算車輛行駛的速度,所用的經(jīng)驗公式是u=16.其中u表示車速(單位:km/h),d表示剎車距離(單位:m),f表示摩擦系數(shù).在一次交通事故中,測得d=20m,f=1.44,而發(fā)生交通事故的路段限速為80km/h,肇事汽車是否違規(guī)超速行駛?說明理由.(參考數(shù)據(jù):≈1.4,≈2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 相似三角形一定全等B. 不相似的三角形不一定全等
C. 全等三角形不一定是相似三角形D. 全等三角形一定是相似三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運輸隊要運300 t物資到江邊防洪.
(1)運輸時間t(單位:h)與運輸速度v(單位:t/h)之間有怎樣的函數(shù)關(guān)系式?
(2)運了一半時,接到防洪指揮部命令,剩下的物資要在2 h之內(nèi)運到江邊,則運輸速度至少為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com