【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長是 .
【答案】7
【解析】解:∵矩形ABCD中,G是CD的中點(diǎn),AB=8, ∴CG=DG= ×8=4,
在△DEG和△CFG中,
,
∴△DEG≌△CFG(ASA),
∴DE=CF,EG=FG,
設(shè)DE=x,
則BF=BC+CF=AD+CF=4+x+x=4+2x,
在Rt△DEG中,EG= = ,
∴EF=2 ,
∵FH垂直平分BE,
∴BF=EF,
∴4+2x=2 ,
解得x=3,
∴AD=AE+DE=4+3=7,
∴BC=AD=7.
故答案為:7.
根據(jù)線段中點(diǎn)的定義可得CG=DG,然后利用“角邊角”證明△DEG和△CFG全等,根據(jù)全等三角形對應(yīng)邊相等可得DE=CF,EG=FG,設(shè)DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得BF=EF,然后列出方程求出x的值,從而求出AD,再根據(jù)矩形的對邊相等可得BC=AD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點(diǎn)A1,得∠A1,∠A1BC和∠A1CD的平分線交于點(diǎn)A2,得∠A2…∠A2 017BC和∠A2 017CD的平分線交于點(diǎn)A2 018,則∠A2 018=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底邊OA上的動點(diǎn).
(1)tan∠OAC= .
(2)邊AB關(guān)于直線CG的對稱線段為MN,若MN與△OAC的其中一邊平行時(shí),則t=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(提出問題)
如圖①,點(diǎn)、、在同一條直線上,,,且,,易證≌.
(類比探究)
()如圖②,在和中,,若,,.求證:≌.
(知識應(yīng)用)
()如圖②,在和中,,若,,,若的度數(shù)是的倍,則__________.
(數(shù)學(xué)思考)
()如圖②,在和中,,若,,當(dāng)≌時(shí),__________.(結(jié)果用含有的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以BC為底邊的等腰△ABC,點(diǎn)D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點(diǎn)F,使得BE=BF.
(1)求證:四邊形BDEF為平行四邊形;
(2)當(dāng)∠C=45°,BD=2時(shí),求D,F兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫理由:如圖所示
∵DF∥AC(已知),
∴∠D+∠DBC=180°.( )
∵∠C=∠D(已知),
∴∠C+ =180°.( )
∴DB∥EC( )
∴∠D=∠CEF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1經(jīng)過過點(diǎn)P(2,2),分別交x軸、y軸于點(diǎn)A(4,0),B。
(1)求直線l1的解析式;
(2)點(diǎn)C為x軸負(fù)半軸上一點(diǎn),過點(diǎn)C的直線l2:交線段AB于點(diǎn)D。
如圖1,當(dāng)點(diǎn)D恰與點(diǎn)P重合時(shí),點(diǎn)Q(t,0)為x軸上一動點(diǎn),過點(diǎn)Q作QM⊥x軸,分別交直線l1、l2于點(diǎn)M、N。若,MN=2MQ,求t的值;
如圖2,若BC=CD,試判斷m,n之間的數(shù)量關(guān)系并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,點(diǎn)PQ分別是AB、AD邊上的動點(diǎn),則PQ+BQ的最小值是
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com