【題目】如圖是使用測(cè)角儀測(cè)量一幅壁畫(huà)高度的示意圖,已知壁畫(huà)AB的底端距離地面的高度BC=1m,在壁畫(huà)的正前方點(diǎn)D處測(cè)得壁畫(huà)底端的俯角∠BDF=30°,且點(diǎn)D距離地面的高度DE=2m,求壁畫(huà)AB的高度.
【答案】解:先過(guò)點(diǎn)B作BG⊥DE于點(diǎn)G.
∵DE⊥CE,EC⊥CF,DF⊥AC,
∴四邊形DECF是矩形,
∵BC=1m,DE=2m,
∴EG=BC=1m,DG=BF=1m,
在Rt△DBF中,
∵∠BDF=30°,BF=1m,
∴DF= = = ,
同理,在Rt△ADF中,
∵∠ADF=60°,DF= ,
∴AF=DFtan60°= × =3m.
∴AB=AF+BF=3+1=4m.
答:壁畫(huà)AB的高度是4米.
【解析】先過(guò)點(diǎn)B作BG⊥DE于點(diǎn)G,由于DE⊥CE,EC⊥CE,DF⊥AC,故四邊形DECF是矩形,BC=1m,DE=2m,所以EG=BC=1m,故DG=BF=1m,在Rt△DBF中,由銳角三角函數(shù)的定義可求出DF的長(zhǎng),同理在Rt△ADF中由銳角三角函數(shù)的定義可求出AF的長(zhǎng),根據(jù)AB=AF+BF即可得出結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的銳角三角函數(shù)的定義,需要了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα= , ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)中,△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(﹣ ,0)、B( ,0)、C(0,3).
(1)求△ABC內(nèi)切圓⊙D的半徑.
(2)過(guò)點(diǎn)E(0,﹣1)的直線與⊙D相切于點(diǎn)F(點(diǎn)F在第一象限),求直線EF的解析式.
(3)以(2)為條件,P為直線EF上一點(diǎn),以P為圓心,以2 為半徑作⊙P.若⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,求此時(shí)圓心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點(diǎn)A、B,與反比例函數(shù) 的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長(zhǎng)為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E.
(1)△CDE是三角形;點(diǎn)C的坐標(biāo)為 , 點(diǎn)D的坐標(biāo)為(用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)數(shù)值轉(zhuǎn)換器.
(1)當(dāng)輸入x=25時(shí),求輸出的y的值;
(2)是否存在輸入x的值后,始終輸不出y的值?如果存在,請(qǐng)直接寫(xiě)出所有滿足要求的x值;如果不存在,請(qǐng)說(shuō)明理由;
(3)輸入一個(gè)兩位數(shù)x,恰好經(jīng)過(guò)三次取算術(shù)平方根才能輸出無(wú)理數(shù)y,則x=________(只填一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).
(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問(wèn)x應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海南有豐富的旅游產(chǎn)品.某校九年級(jí)(1)班的同學(xué)就部分旅游產(chǎn)品的喜愛(ài)情況對(duì)游客隨機(jī)調(diào)查,要求游客在列舉的旅游產(chǎn)品中選出喜愛(ài)的產(chǎn)品,且只能選一項(xiàng).以下是同學(xué)們整理的不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息完成下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)調(diào)查的游客有人;在扇形統(tǒng)計(jì)圖中,A部分所占的圓心角是度;
(3)請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)在1500名游客中喜愛(ài)攀錦的約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某月的日歷表,在此日歷表上可以用一個(gè)矩形圈出3×3個(gè)位置的9個(gè)數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個(gè)數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個(gè)數(shù)的和為( 。
A. 69 B. 84 C. 189 D. 207
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com