【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點(diǎn)E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請(qǐng)說(shuō)明理由.

【答案】(1)35°.;(2)n°+35°.(3)215°-n°.

【解析】試題分析:(1)、根據(jù)角平分線直接得出答案;(2)、過(guò)點(diǎn)EEF∥AB,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)求出角度;(3)、首先根據(jù)題意畫出圖形,然后過(guò)點(diǎn)EEF∥AB,按照第二小題同樣的方法進(jìn)行計(jì)算角度.

試題解析:(1)、∵DE平分∠ADC∠ADC=70°,

∴∠EDC=∠ADC=×70°=35°;

2)、過(guò)點(diǎn)EEF∥AB,

∵AB∥CD,

∴AB∥CD∥EF

∴∠ABE=∠BEF,∠CDE=∠DEF,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°∠ADC=70°,

∴∠ABE=∠ABC=,∠CDE=∠ADC=35°

∴∠BED=∠BEF+∠DEF=n°+35°;

3)、過(guò)點(diǎn)EEF∥AB

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABE=∠ABC=∠CDE=∠ADC=35°

∵AB∥CD,

∴AB∥CD∥EF,

∴∠BEF=180°-∠ABE=180°-,∠CDE=∠DEF=35°,

∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在折紙活動(dòng)中,小明制作了一張⊿ABC紙片,點(diǎn)D、E分別是邊AB、AC上,將⊿ABC沿著DE折疊壓平,AA’重合,若∠A=75°,則∠1+∠2=( )

A. 150° B. 210° C. 105° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1 的角平分線BD、CE相交于點(diǎn)P.

1)如果,求∠BPC的度數(shù);

2)如圖2,作外角的角平分線交于點(diǎn)Q,試探索之間的數(shù)量關(guān)系。

3)如圖3,延長(zhǎng)線段BP、QC交于點(diǎn)EBQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,求的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長(zhǎng)度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請(qǐng)通過(guò)畫圖分析、探究回答下列問(wèn)題:

(1)請(qǐng)?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;

(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以AB、M為頂點(diǎn)的三角形的面積為2的概率;

(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以AB、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF

1)若∠A=60°ABD=24°,求∠ACF的度數(shù);

2)若EF=4,BFFD=53,SBCF=10,求點(diǎn)DAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,AB=6cmAD=24cm,BCCD的長(zhǎng)度之和為34cm,其中C是直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)你探究當(dāng)C離點(diǎn)B有多遠(yuǎn)時(shí),ACD是以DC為斜邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點(diǎn)M(1,2).

(1)以點(diǎn)M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABC、BCD的平分線BECF分別與AD相交于點(diǎn)E、F,BECF相交于點(diǎn)G.

(1)求證:BECF

(2)AB3BC5,CF2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案