【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側作等邊

1)如圖①,點在線段上移動時,直接寫出的大小關系;

2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

【答案】1,理由見解析;(2,不發(fā)生變化;理由見解析

【解析】

1)由等邊三角形的性質得出∠BAC=DAE,容易得出結論;
2)由△ABC和△ADE是等邊三角形可以得出AB=BC=AC,AD=AE,∠ABC=ACB=BAC=DAE=60°,得出∠ABD=120°,再證明△ABD≌△ACE,得出∠ABD=ACE=120°,即可得出結論.

解:(1;理由如下:

和△是等邊三角形,

,

;

2,不發(fā)生變化;理由如下:

是等邊三角形,是等邊三角形,

,,,

,,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,有一等腰直角三角形OAB,OAB=90°,直角邊OAx軸正半軸上,且OA=1,將RtOAB繞原點順時針旋轉90°,同時擴大邊長的1倍,得到等腰直角三角形OA1B1(即A1O=2AO).同理,將RtOA1B1順時針旋轉90°,同時擴大邊長1倍,得到等腰直角三角形OA2B2……依此規(guī)律,得到等腰直角三角形OA2014B2014,則A2014點的坐標為( 。

A. (0,22014 B. (0,﹣22014 C. (22014,0) D. (﹣22014,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點CCDAFAF延長線于點D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,A(﹣3,0),B(0,4),對△AOB按圖示方式連續(xù)作旋轉變換,這樣算到的第2016個三角形時,A點的對應點的坐標為( 。

A. (8064,4) B. (8064,0) C. (8064,3) D. (8061,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的內角∠ABC和外角∠ACD的平分線相交于點E,BEAC于點F,過點EEGBDAB于點G,交AC于點H,連接AE,有以下結論:

①∠BEC=BAC;②△HEF≌△CBF;BG=CH+GH;④∠AEB+ACE=90°,其中正確的結論有_____(將所有正確答案的序號填寫在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,則的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形是由等邊和頂角為120°的等腰三角形拼成,將一個60°角頂點放在點處,60°角兩邊分別交直線,交直線兩點.

1)當都在線段上時,探究之間的數(shù)量關系,并證明你的結論;

2)當在邊的延長線上時,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南沙群島是我國固有領土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BECD相交于F,若AD=3,BD=6

1)求證:△EDF≌△CBF;

2)求∠EBC

查看答案和解析>>

同步練習冊答案