【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)P(2,3),點(diǎn)D是正比例函數(shù)圖象上的一點(diǎn),過點(diǎn)D作y軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點(diǎn)A,過點(diǎn)A作x軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點(diǎn)E.
(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.
(2)當(dāng)點(diǎn)D的縱坐標(biāo)為9時,求:點(diǎn)E的坐標(biāo).
【答案】(1)y=;(2)E(,1)
【解析】
(1)根據(jù)待定系數(shù)法求得即可;
(2)把y=9代入反比例函數(shù)的解析式即可求得A的坐標(biāo),把A點(diǎn)的橫坐標(biāo)代入正比例函數(shù)的解析式即可求得E的坐標(biāo).
(1)設(shè)正比例函數(shù)解析式為y=mx,反比例函數(shù)解析式y=(m≠0,k≠0),
把P(2,3)代入y=mx得3=2m,解得m=,
∴正比例函數(shù)解析式為y=x,
把P(2,3)代入y=得,3=,解得k=6,
∴反比例函數(shù)解析式為y=;
(2)把y=9代入y=,得9=,解得x=,
∴A(,9),
把x=代入y=x,得y=×=1,
∴E(,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點(diǎn)O為BD的中點(diǎn),且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市舉行的中學(xué)生安全知識競賽中共有20道題.每一題答對得5分,答錯或不答都扣3分.
(1)小李考了60分,那么小李答對了多少道題?
(2)小王獲得二等獎(75~85分),請你算算小王答對了幾道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
問題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義證明完全平方公式.
證明:將一個邊長為a的正方形的邊長增加b,形成兩個矩形和兩個正方形,如圖1:
這個圖形的面積可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
這就驗(yàn)證了兩數(shù)和的完全平方公式.
(1)類比解決:
請你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫出圖形并寫出推理過程)
(2)問題提出:如何利用圖形幾何意義的方法證明:13+23=32?
如圖2,
A表示1個1×1的正方形,即:1×1×1=13
B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,因此:B、C、D就可以表示2個2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一個(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
嘗試解決:
請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:13+23+33= . (要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).
(3)問題拓廣:
請用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= . (直接寫出結(jié)論即可,不必寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,現(xiàn)有動點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB也向點(diǎn)B方向運(yùn)動,如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時,就停止運(yùn)動.設(shè)運(yùn)動時間為t秒.求:
(1)當(dāng)t=3秒時,這時,P,Q兩點(diǎn)之間的距離是多少?
(2)若△CPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家在甲、乙兩家商場銷售同一商品所獲利潤分別為y甲,y乙(單位:元),y甲,y乙與銷售數(shù)量x(單位:件)的函數(shù)關(guān)系如圖所示,請根據(jù)圖象解決下列問題:
(1)分別求出y甲,y乙與x的函數(shù)關(guān)系式;
(2)現(xiàn)廠家分配該商品給甲、乙兩商場共計1200件,當(dāng)甲、乙商場售完這批商品,廠家可獲得總利潤為1080元,問廠家如何分配這批商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)M、N分別為ABCD的邊CD、AB的中點(diǎn),連接AM、CN.
(1)證明:AM=CN;
(2)過點(diǎn)B作BH⊥AM于點(diǎn)H,交CN于點(diǎn)E,連接CH,判斷線段CB、CH的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com