【題目】某倉庫有50件同一規(guī)格的某種集裝箱,準備委托運輸公司送到碼頭,運輸公司有每次可裝運1件、2件、3件這種集裝箱的三種型號的貨車,這三種型號的貨車每次收費分別為120元、160元、180元現(xiàn)要求安排20輛貨車剛好一次裝運完這些集裝箱,問這三種型號的貨車各需多少輛?有多少種安排方式?哪些安排方式所需的運費最少?最少運費是多少?

【答案】, ,,,這六種安排方式,第6種方式運費最低,最低費用為3300元.

【解析】

先設需要裝運1件、2件、3件集裝箱的貨車分別為x輛、y輛、z輛,再根據(jù)題意列出關于x、y、z的方程組,用x表示出yz的值,再根據(jù)y0即可求出符合條件的未知數(shù)的對應值.

解:設需要裝運1件、2件、3件集裝箱的貨車分別為x輛、y輛、z輛,

依題意得,

,

x只能取0、1、2、3、45共有:

、、、,這六種安排方式.

設總運費為元,則

5時,總運費最低;

最低運費為:

(元).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某日,王艷騎自行車到位于家正東方向的演奏廳聽音樂會.王艷離家5分鐘后自行車出現(xiàn)故障而且發(fā)現(xiàn)沒有帶錢包,王艷立即打電話通知在家看報紙的爸爸騎自行車趕來送錢包(王艷打電話和爸爸準備出門的時間忽略不計),同時王艷以原來一半的速度推著自行車繼續(xù)走向演奏廳.爸爸接到電話后,立刻出發(fā)追趕王艷,追上王艷的同時,王艷坐上出租車并以爸爸速度的2倍趕往演奏廳(王艷打車和爸爸將錢包給王艷的時間忽略不計),同時爸爸立刻掉頭以原速趕到位于家正西方3900米的公司上班,最后王艷比爸爸早到達目地的.在整個過程中,王艷和爸爸保持勻速行駛.如圖是王艷與爸爸之間的距離y(米)與王艷出發(fā)時間x(分鐘)之間的函數(shù)圖象,則王艷到達演奏廳時,爸爸距離公司_____米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC90°,AD⊥BCD,將AB邊沿AD折疊,發(fā)現(xiàn)B點的對應點E正好在AC的垂直平分線上,則∠C_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB相交,∠BAC=40°.

(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);

(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DPAC,求∠OCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校參加學生英語口語比賽,兩校參賽人數(shù)相等.比賽結束后,發(fā)現(xiàn)學生成績分別為7分、8分、9分、10分(滿分為10分),乙校平均分是83分,乙校的中位數(shù)是8分.依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的甲校成績統(tǒng)計表和乙校成績統(tǒng)計圖;

甲校成績統(tǒng)計表

分數(shù)

7

8

9

10

人數(shù)

11

0

8

1)請你將乙校成績統(tǒng)計圖直接補充完整;

2)請直接寫出甲校的平均分是   ,甲校的中位數(shù)是   ,甲校的眾數(shù)是   ,從平均分和中位數(shù)的角度分析   校成績較好(填).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等邊三角形,P為△ABC所在平面內(nèi)一個動點,BP=BA,若﹤∠PBC 180°,且∠PBC的平分線上一點D滿足DB=DA.

(1)BPBA重合時(如圖1),則∠BPD=______°.

(2)BP在∠ABC內(nèi)部時(如圖2),求∠BPD的度數(shù)

(3)BP在∠ABC外部時,請直接寫出∠BPD的度數(shù),并畫出相應的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,

1)如圖(a)所示,分別是的角平分線,判斷的位置關系,并證明.

2)如圖(b)所示,、分別是的角平分線,直接寫出的位置關系.

3)如圖(c)所示,分別是的角平分線,判斷的位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,∠BAD=90°,對角線BD⊥DC

1△ABD△DCB相似嗎?請回答并說明理由;

2)如果AD=4BC=9,求BD的長.

查看答案和解析>>

同步練習冊答案