【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為

(1)求線段AP的長;

(2)DE⊙O的切線,求線段OE的長.

【答案】(1)2(2)5

【解析】

(1)根據(jù)垂徑定理由直徑FGAB得到AP=BP=AB=2;

(2)由勾股定理先求得OP,可證AOP∽△EOC,可得,即可求得OE.

(1)FG為直徑,FGAB,AB=4,

AP=BP=AB=2;

(2)FGAB,AP=2,OA=,

∴在RtAOG中,OP=,

在△AOP和△EOC,

∵∠APO=ECO=90°,AOP=EOC,

∴△AOP∽△EOC,

,

,

OE=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個實根x1x2

(1) 求實數(shù)k的取值范圍

(2) 若方程兩實根x1、x2滿足x12-x22=0,求k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的邊AB=3,AD=8,頂點A、D分別在x軸、y軸上滑動,在矩形滑動過程中,點C到原點O距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以A,B為圓心,以大于AB的長為半徑作弧,兩弧相交于兩點EF;②作直線EFBC于點D連接AD.若ADAC,∠C40°,則∠BAC的度數(shù)是( )

A.105°B.110°C.I15°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB∽Rt△DOC,∠ABO=30°,∠AOB=∠COD=90°,MOA的中點,OA=4,將△COD繞點O旋轉(zhuǎn)一周,直線AD,CB交于點P,連接MP,則MP的最小值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB=4cm,BC=6cm,點E、F、G 分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點G的運動速度為2cm/s,當(dāng)點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).

(1)若點F的運動速度為2 cm/s.

當(dāng)t=______s時,四邊形EBFB′為正方形;

若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;

(2)若存在實數(shù)t,使得點B′與點O重合,求出t的值;并求出點F的運動速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A1,3),B2,5),C4,2)(每個方格的邊長均為1個單位長度)

1)將ABC平移,使點A移動到點A1,請畫出A1B1C1;

2)作出ABC關(guān)于O點成中心對稱的A2B2C2,并直接寫出A2,B2,C2的坐標(biāo);

3A1B1C1A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AC=2,點B為半圓的中點,點D在弦AB上,連結(jié)CD,作BF⊥CD于點E,交AC于點F,連結(jié)DF,當(dāng)△BCE和△DEF相似時,BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù) 的圖象于點B,點Cx軸上一點,且AO=AC,求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案