【題目】如圖,OA⊥OC,OB⊥OD,四位同學(xué)分別說了自己的觀點.
甲:∠AOB=∠COD.
乙:∠BOC+∠AOD=180°.
丙:∠AOB與∠COD都是∠BOC的余角.
丁:圖中小于平角的角有4個.
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時,求該不等式的解集;
(2)m取何值時,該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)愛國主義教育,提高思想道德素質(zhì),某中學(xué)決定組織部分班級去山西國民師范舊址革命活動紀(jì)念館開展紅色旅游活動,在參加此次活動的師生中,若每位教師帶17名學(xué)生,還剩12名學(xué)生沒人帶;若每位教師帶18名學(xué)生,就有一位教師少帶4名學(xué)生.現(xiàn)有甲、乙兩種大客車,兩種客車的載客量和租金如下表所示.
類別 | 甲種客車 | 乙種客車 |
載客量(人/輛) | 30 | 42 |
租金(元/輛) | 300 | 420 |
(1)參加此次紅色旅游活動的教師和學(xué)生各有多少人?
(2)為了安全,每輛客車上要有2名教師.則怎樣租車可以保證師生均有車坐,而且每輛車上都沒有空座,也不超載,此時租車的費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】好學(xué)小東同學(xué),在學(xué)習(xí)多項式乘以多項式時發(fā)現(xiàn):(x+4)(2x+5)(3x-6)的結(jié)果是一個多項式,并且最高次項為:x2x3x=3x3,常數(shù)項為:4×5×(-6)=-120,那么一次項是多少呢?要解決這個問題,就是要確定該一次項的系數(shù).根據(jù)嘗試和總結(jié)他發(fā)現(xiàn):一次項系數(shù)就是:×5×(-6)+2×(-6)×4+3×4×5=-3,即一次項為-3x.
請你認(rèn)真領(lǐng)會小東同學(xué)解決問題的思路,方法,仔細(xì)分析上面等式的結(jié)構(gòu)特征.結(jié)合自己對多項式乘法法則的理解,解決以下問題.
(1)計算(x+2)(3x+1)(5x-3)所得多項式的一次項系數(shù)為_____.
(2)(x+6)(2x+3)(5x-4)所得多項式的二次項系數(shù)為_______.
(3)若計算(x2+x+1)(x2-3x+a)(2x-1)所得多項式不含一次項,求a的值;
(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,則a2020=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是線段DE上一點,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,BD、CE、DE有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題情境]勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明.著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系(勾股定理)”帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語言.
[定理表述]請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述).
[嘗試證明]以圖(1)中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖(2)),請你利用圖(2)驗證勾股定理.
[知識拓展]利用圖(2)中的直角梯形,我們可以證明.其證明步驟如下:
∵BC=a+b,AD=________,
又∵在直角梯形ABCD中,有BC________AD(填大小關(guān)系),即________,
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠ACB=90°,AC=2,CB=4.點P為線段CB上一動點,連接AP,△APC與△APC′關(guān)于直線AP對稱,其中點C的對稱點為點C′.直線m過點A且平行于CB
(1)如圖①:連接AB,當(dāng)點C落在線段AB上時,求BC′的長;
(2)如圖②:當(dāng)PC=BC時,延長PC′交直線m于點D,求△ADC′面積;
(3)在(2)的條件下,連接BC′,直接寫出線段BC′的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com