【題目】正方形ABCD的邊長為6cm,點(diǎn)E,M分別是線段BD,AD上的動(dòng)點(diǎn),連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點(diǎn)N.
(1)如圖①,若點(diǎn)M與點(diǎn)D重合,求證:AF=MN;
(2)如圖②,若點(diǎn)M從點(diǎn)D出發(fā),以1cm/s的速度沿DA向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以cm/s的速度沿BD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts.
①設(shè)BF=ycm,求y關(guān)于t的函數(shù)表達(dá)式;
②當(dāng)BN=2AN時(shí),連接FN,求FN的長.
【答案】見解析
【解析】試題分析:(1)根據(jù)四邊形的性質(zhì)得到AD=AB,∠BAD=90°,由垂直的定義得到∠AHM=90°,由余角的性質(zhì)得到∠BAF=∠AMH,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)①根據(jù)勾股定理得到BD=6,由題意得,DM=t,BE=t,求得AM=6-t,DE=6-t,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;
②根據(jù)已知條件得到AN=2,BN=4,根據(jù)相似三角形的性質(zhì)得到BF=,由①求得BF=,得方程=,于是得到結(jié)論.
試題解析:
(1)證明:∵四邊形ABCD為正方形,
∴AD=AB,∠DAN=∠FBA=90°.
∵MN⊥AF,
∴∠NAH+∠ANH=90°.
∵∠NDA+∠ANH=90°,
∴∠NAH=∠NDA,
∴△ABF≌△MAN,
∴AF=MN.
(2)①∵四邊形ABCD為正方形,
∴AD∥BF,
∴∠ADE=∠FBE.
∵∠AED=∠BEF,
∴△EBF∽△EDA,
∴=.
∵四邊形ABCD為正方形,
∴AD=DC=CB=6cm,
∴BD=6cm.
∵點(diǎn)E從點(diǎn)B出發(fā),以cm/s的速度沿BD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts,
∴BE=tcm,DE=(6-t)cm,
∴=,
∴y=.
②∵四邊形ABCD為正方形,
∴∠MAN=∠FBA=90°.
∵MN⊥AF,
∴∠NAH+∠ANH=90°.
∵∠NMA+∠ANH=90°,
∴∠NAH=∠NMA.
∴△ABF∽△MAN,
∴=.
∵BN=2AN,AB=6cm,
∴AN=2cm.
∴=,
∴t=2,
∴BF==3(cm).
又∵BN=4cm,
∴FN==5(cm).
點(diǎn)睛: 本題主要考查正方形的性質(zhì)和相似三角形、全等三角形的判定和性質(zhì)、勾股定理等知識點(diǎn)的綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式;①(﹣2)0;②﹣22;③(﹣2)3 , 計(jì)算結(jié)果為負(fù)數(shù)的個(gè)數(shù)是( )個(gè).
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(x2+x﹣1)x+3=1的所有整數(shù)解的個(gè)數(shù)是( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2,以AD2為一邊,做第二個(gè)菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3,以AD3為一邊做第三個(gè)菱形AB3C3D3,使∠B3=60°…則AD2=_____,依此類推這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com