【題目】閱讀理解
材料一:一組對邊平行,另一組對邊不平行的四邊形叫梯形,其中平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的腰,連接梯形兩腰中點的線段叫梯形的中位線.梯形的中位線具有以下性質:梯形的中位線平行于兩底和,并且等于兩底和的一半.
如圖(1):在梯形ABCD中:AD∥BC,
∵E、F是AB、CD的中點,∴EF∥AD∥BC,EF=(AD+BC).
材料二:經過三角形一邊的中點與另一邊平行的直線必平分第三邊
如圖(2):在△ABC中:∵E是AB的中點,EF∥BC,
∴F是AC的中點.
請你運用所學知識,結合上述材料,解答下列問題.
如圖(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分別為AB、CD的中點,∠DBC=30°.
(1)求證:EF=AC;
(2)若OD=,OC=5,求MN的長.
【答案】(1)證明見試題解析;(2)2.
【解析】
試題分析:(1)由直角三角形中30°的銳角所對的直角邊是斜邊的一半,可得OA=AD,OC=BC,即可證明;
(2)直角三角形中30°的銳角所對的直角邊是斜邊的一半,得出OA=3,利用平行線得出ON=MN,再根據AN=AC=4,得出ON=4﹣3=1,進而得出MN的值.
試題解析:(1)∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∴AC=OA+OC=(AD+BC),∵EF=(AD+BC),∴AC=EF;
(2)∵AD∥BC,∴∠ADO=∠DBC=30°,∴在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,
∵OD=,OC=5,∴OA=3,∵AD∥EF,∴∠ADO=∠OMN=30°,∴ON=MN,∵AN=AC=(OA+OC)=4,∴ON=AN﹣OA=4﹣3=1,∴MN=2ON=2.
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,∠C=90°,AB的垂直平分線MN交BC于點D。
(1)如果∠CAD=20°,求∠B的度數。
(2)如果∠CAB=50°,求∠CAD的度數。
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍。乒乓球拍每副定價30元,乒乓球每盒定價5元,經洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠。該班需球拍5副,乒乓球若干盒(不小于5盒)。
問:
(1)設購買乒乓球x盒時,在甲家購買所需多少元?在乙家購買所需多少元?(用含x的代數式表示,并化簡)
(2)當購買乒乓球多少盒時,兩種優(yōu)惠辦法付款一樣?
(3)當購買30盒乒乓球時,若讓你選擇一家商店去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】老師給出一個二次函數,甲、乙兩名同學各指出這個函數的一個性質.甲:函數圖象的頂點在x軸上;乙:拋物線開口向下;已知這兩位同學的描述都正確,請你寫出滿足上述所有性質的一個二次函數表達式_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各式中,不成立的是( 。
A.cos60°=2sin30°B.sin15°=cos75°
C.tan30°tan60°=1D.sin230°+cos230°=1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上.
①如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由;
②如圖3,設AB=a,BP=b,當EP平分∠AEC時,求a:b及∠AEC的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com