【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.
(1)求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);
(2)甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時?
【答案】(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時
【解析】
(1)過點P作PE⊥AB于點E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;
(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進(jìn)行檢驗即可得.
(1)如圖,過點P作PE⊥MN,垂足為E,
由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,
根據(jù)題意,得,
解得x=20,
經(jīng)檢驗,x=20是原方程的解,
甲船的速度為1.2x=1.2×20=24(海里/時).,
答:甲船的速度是24海里/時,乙船的速度是20海里/時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的,兩點,過點作軸于點,,,點的坐標(biāo)為.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請根據(jù)圖象直接寫出的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過A(﹣1,0),B(2,0),C三點.直線y=mx+交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當(dāng)點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標(biāo);
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最。咳舸嬖,請求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點A(2,0),點B(0,2),動點D以1個單位長度/秒的速度從點A出發(fā)向x軸負(fù)半軸運動,同時動點E以個單位長度/秒的速度從點B出發(fā)向y軸負(fù)半軸運動,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F
(1)求∠OAB度數(shù);
(2)當(dāng)t為何值時,四邊形ADEF為菱形,請求出此時二次函數(shù)解析式;
(3)是否存在實數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對二次函數(shù)的圖象的描述,正確的是( )
A. 經(jīng)過原點
B. 對稱軸是y軸
C. 開口向下
D. 在對稱右側(cè)部分是向下的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC是直徑,點D是AC延長線上一點,且∠DBC=∠BAC,.
(1)求證:BD是⊙O的切線;(2)求的值;(3)如圖,直徑AC=5,,求△ABF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有以下六個命題,①同旁內(nèi)角互補(bǔ);②若x2=4,則x=2;③;④平分弦的直徑垂直于弦;⑤等弧所對的圓心角相等;⑥相等的圓心角所對的弧相等.從這六個命題中隨機(jī)任意抽取一個命題是真命題的概率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com